资源描述
中考数学压轴题专题平行四边形的经典综合题及答案
一、平行四边形
1.如图1,正方形ABCD的一边AB在直尺一边所在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E.
(1)如图1,线段AB与OE之间的数量关系为 .(请直接填结论)
(2)保证点A始终在直线MN上,正方形ABCD绕点A旋转θ(0<θ<90°),过点 B作BF⊥MN于点F.
①如图2,当点O、B两点均在直线MN右侧时,试猜想线段AF、BF与OE之间存在怎样的数量关系?请说明理由.
②如图3,当点O、B两点分别在直线MN两侧时,此时①中结论是否依然成立呢?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.
③当正方形ABCD绕点A旋转到如图4的位置时,线段AF、BF与OE之间的数量关系为 .(请直接填结论)
【答案】(1)AB=2OE;(2)①AF+BF=2OE,证明见解析;②AF﹣BF=2OE 证明见解析;③BF﹣AF=2OE,
【解析】
试题分析:(1)利用直角三角形斜边的中线等于斜边的一半即可得出结论;
(2)①过点B作BH⊥OE于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;
②过点B作BH⊥OE交OE的延长线于H,可得四边形BHEF是矩形,根据矩形的对边相等可得EF=BH,BF=HE,根据正方形的对角线相等且互相垂直平分可得OA=OB,∠AOB=90°,再根据同角的余角相等求出∠AOE=∠OBH,然后利用“角角边”证明△AOE和△OBH全等,根据全等三角形对应边相等可得OH=AE,OE=BH,再根据AF-EF=AE,整理即可得证;
③同②的方法可证.
试题解析:(1)∵AC,BD是正方形的对角线,
∴OA=OC=OB,∠BAD=∠ABC=90°,
∵OE⊥AB,
∴OE=AB,
∴AB=2OE,
(2)①AF+BF=2OE
证明:如图2,过点B作BH⊥OE于点H
∴∠BHE=∠BHO=90°
∵OE⊥MN,BF⊥MN
∴∠BFE=∠OEF=90°
∴四边形EFBH为矩形
∴BF=EH,EF=BH
∵四边形ABCD为正方形
∴OA=OB,∠AOB=90°
∴∠AOE+∠HOB=∠OBH+∠HOB=90°
∴∠AOE=∠OBH
∴△AEO≌△OHB(AAS)
∴AE=OH,OE=BH
∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.
②AF﹣BF=2OE
证明:如图3,延长OE,过点B作BH⊥OE于点H
∴∠EHB=90°
∵OE⊥MN,BF⊥MN
∴∠AEO=∠HEF=∠BFE=90°
∴四边形HBFE为矩形
∴BF=HE,EF=BH
∵四边形ABCD是正方形
∴OA=OB,∠AOB=90°
∴∠AOE+∠BOH=∠OBH+∠BOH
∴∠AOE=∠OBH
∴△AOE≌△OBH(AAS)
∴AE=OH,OE=BH,
∴AF﹣BF
=AE+EF﹣HE=OH﹣HE+OE=OE+OE=2OE
③BF﹣AF=2OE,
如图4,作OG⊥BF于G,则四边形EFGO是矩形,
∴EF=GO,GF=EO,∠GOE=90°,
∴∠AOE+∠AOG=90°.
在正方形ABCD中,OA=OB,∠AOB=90°,
∴∠AOG+∠BOG=90°,
∴∠AOE=∠BOG.
∵OG⊥BF,OE⊥AE,
∴∠AEO=∠BGO=90°.
∴△AOE≌△BOG(AAS),
∴OE=OG,AE=BG,
∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,
∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,
∴BF﹣AF=2OE.
2.已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;
(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.
【答案】(1)见解析;
(2)存在,理由见解析;
(3)不成立.理由如下见解析.
【解析】
试题分析:(1)由b=2a,点M是AD的中点,可得AB=AM=MD=DC=a,又由四边形ABCD是矩形,即可求得∠AMB=∠DMC=45°,则可求得∠BMC=90°;
(2)由∠BMC=90°,易证得△ABM∽△DMC,设AM=x,根据相似三角形的对应边成比例,即可得方程:x2﹣bx+a2=0,由b>2a,a>0,b>0,即可判定△>0,即可确定方程有两个不相等的实数根,且两根均大于零,符合题意;
(3)由(2),当b<2a,a>0,b>0,判定方程x2﹣bx+a2=0的根的情况,即可求得答案.
试题解析:(1)∵b=2a,点M是AD的中点,
∴AB=AM=MD=DC=a,
又∵在矩形ABCD中,∠A=∠D=90°,
∴∠AMB=∠DMC=45°,
∴∠BMC=90°.
(2)存在,
理由:若∠BMC=90°,
则∠AMB+∠DMC=90°,
又∵∠AMB+∠ABM=90°,
∴∠ABM=∠DMC,
又∵∠A=∠D=90°,
∴△ABM∽△DMC,
∴,
设AM=x,则,
整理得:x2﹣bx+a2=0,
∵b>2a,a>0,b>0,
∴△=b2﹣4a2>0,
∴方程有两个不相等的实数根,且两根均大于零,符合题意,
∴当b>2a时,存在∠BMC=90°,
(3)不成立.
理由:若∠BMC=90°,
由(2)可知x2﹣bx+a2=0,
∵b<2a,a>0,b>0,
∴△=b2﹣4a2<0,
∴方程没有实数根,
∴当b<2a时,不存在∠BMC=90°,即(2)中的结论不成立.
考点:1、相似三角形的判定与性质;2、根的判别式;3、矩形的性质
3.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.
(1)求证:△AED≌△CEB′
(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.
【答案】(1)证明见解析;(2).
【解析】
【分析】
(1)由折叠的性质知,,,,则由得到;
(2)由,可得,又由,即可求得的长,然后在中,利用勾股定理即可求得的长,再过点作于,由角平分线的性质,可得,易证得四边形是矩形,继而可求得答案.
【详解】
(1)四边形为矩形,
,,
又 ,
;
(2) ,
,
,
,
在中,,
过点作于,
,,
,
,,
,
、、共线,
,
四边形是矩形,
,
.
【点睛】
此题考查了折叠的性质、矩形的性质、角平分线的性质、等腰三角形的判定与性质以及勾股定理等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意掌握辅助线的作法,注意数形结合思想的应用.
4.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).
(1)当点N落在边BC上时,求t的值.
(2)当点N到点A、B的距离相等时,求t的值.
(3)当点Q沿D→B运动时,求S与t之间的函数表达式.
(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF与四边形PQMN的面积比为2:3时t的值.
【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或
【解析】
试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;
(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;
(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.
(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.
试题解析:(1)∵△PQN与△ABC都是等边三角形,
∴当点N落在边BC上时,点Q与点B重合.
∴DQ=3
∴2t=3.
∴t=;
(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,
∴PD=DQ,
当0<t<时,
此时,PD=t,DQ=2t
∴t=2t
∴t=0(不合题意,舍去),
当≤t<3时,
此时,PD=t,DQ=6﹣2t
∴t=6﹣2t,
解得t=2;
综上所述,当点N到点A、B的距离相等时,t=2;
(3)由题意知:此时,PD=t,DQ=2t
当点M在BC边上时,
∴MN=BQ
∵PQ=MN=3t,BQ=3﹣2t
∴3t=3﹣2t
∴解得t=
如图①,当0≤t≤时,
S△PNQ=PQ2=t2;
∴S=S菱形PQMN=2S△PNQ=t2,
如图②,当≤t≤时,
设MN、MQ与边BC的交点分别是E、F,
∵MN=PQ=3t,NE=BQ=3﹣2t,
∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,
∵△EMF是等边三角形,
∴S△EMF=ME2=(5t﹣3)2
.
;
(4)MN、MQ与边BC的交点分别是E、F,
此时<t<,
t=1或.
考点:几何变换综合题
5.已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:△DOE≌△BOF.
(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.
【答案】(1)证明见解析;(2)当∠DOE=90°时,四边形BFED为菱形,理由见解析.
【解析】
试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);
(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形,进而利用垂直平分线的性质得出BE=ED,即可得出答案.
试题解析:(1)∵在▱ABCD中,O为对角线BD的中点,
∴BO=DO,∠EDB=∠FBO,
在△EOD和△FOB中
,
∴△DOE≌△BOF(ASA);
(2)当∠DOE=90°时,四边形BFDE为菱形,
理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四边形EBFD是平行四边形,
∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.
考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.
6.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数;
(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.
【答案】(1)①详见解析;②60°.(2)IH=FH;(3)EG2=AG2+CE2.
【解析】
【分析】
(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.
(2)IH=FH.只要证明△IJF是等边三角形即可.
(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
∵四边形ABCD是矩形,
∴AD∥BC,OB=OD,
∴∠EDO=∠FBO,
在△DOE和△BOF中,
,
∴△DOE≌△BOF,
∴EO=OF,∵OB=OD,
∴四边形EBFD是平行四边形,
∵EF⊥BD,OB=OD,
∴EB=ED,
∴四边形EBFD是菱形.
②∵BE平分∠ABD,
∴∠ABE=∠EBD,
∵EB=ED,
∴∠EBD=∠EDB,
∴∠ABD=2∠ADB,
∵∠ABD+∠ADB=90°,
∴∠ADB=30°,∠ABD=60°,
∴∠ABE=∠EBO=∠OBF=30°,
∴∠EBF=60°.
(2)结论:IH=FH.
理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.
∵四边形EBFD是菱形,∠B=60°,
∴EB=BF=ED,DE∥BF,
∴∠JDH=∠FGH,
在△DHJ和△GHF中,
,
∴△DHJ≌△GHF,
∴DJ=FG,JH=HF,
∴EJ=BG=EM=BI,
∴BE=IM=BF,
∵∠MEJ=∠B=60°,
∴△MEJ是等边三角形,
∴MJ=EM=NI,∠M=∠B=60°
在△BIF和△MJI中,
,
∴△BIF≌△MJI,
∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,
∴IH⊥JF,
∵∠BFI+∠BIF=120°,
∴∠MIJ+∠BIF=120°,
∴∠JIF=60°,
∴△JIF是等边三角形,
在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,
∴∠FIH=30°,
∴IH=FH.
(3)结论:EG2=AG2+CE2.
理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,
∵∠FAD+∠DEF=90°,
∴AFED四点共圆,
∴∠EDF=∠DAE=45°,∠ADC=90°,
∴∠ADF+∠EDC=45°,
∵∠ADF=∠CDM,
∴∠CDM+∠CDE=45°=∠EDG,
在△DEM和△DEG中,
,
∴△DEG≌△DEM,
∴GE=EM,
∵∠DCM=∠DAG=∠ACD=45°,AG=CM,
∴∠ECM=90°
∴EC2+CM2=EM2,
∵EG=EM,AG=CM,
∴GE2=AG2+CE2.
【点睛】
考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.
7.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD的延长线于G.
(1)求证:AE=EG;
(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;
(3)如图3,取GF的中点M,若AB=5,求EM的长.
【答案】(1)证明见解析(2)证明见解析(3)
【解析】
【分析】
(1)根据平行线的性质和等腰三角形的三线合一的性质得:∠CAD=∠G,可得AE=EG;
(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;
(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=AC,计算可得结论.
【详解】
证明:(1)如图1,过E作EH⊥CF于H,
∵AD⊥BC,
∴EH∥AD,
∴∠CEH=∠CAD,∠HEF=∠G,
∵CE=EF,
∴∠CEH=∠HEF,
∴∠CAD=∠G,
∴AE=EG;
(2)如图2,连接GC,
∵AC=BC,AD⊥BC,
∴BD=CD,
∴AG是BC的垂直平分线,
∴GC=GB,
∴∠GBF=∠BCG,
∵BG=BF,
∴GC=BE,
∵CE=EF,
∴∠CEF=180°﹣2∠F,
∵BG=BF,
∴∠GBF=180°﹣2∠F,
∴∠GBF=∠CEF,
∴∠CEF=∠BCG,
∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,
∴∠GCE=∠F,
在△BEF和△GCE中,
,
∴△BEF≌△GEC(SAS),
∴BE=EG;
(3)如图3,连接DM,取AC的中点N,连接DN,
由(1)得AE=EG,
∴∠GAE=∠AGE,
在Rt△ACD中,N为AC的中点,
∴DN=AC=AN,∠DAN=∠ADN,
∴∠ADN=∠AGE,
∴DN∥GF,
在Rt△GDF中,M是FG的中点,
∴DM=FG=GM,∠GDM=∠AGE,
∴∠GDM=∠DAN,
∴DM∥AE,
∴四边形DMEN是平行四边形,
∴EM=DN=AC,
∵AC=AB=5,
∴EM=.
【点睛】
本题是三角形的综合题,主要考查了全等三角形的判定与性质,直角三角形斜边中线的性质,等腰三角形的性质和判定,平行四边形的性质和判定等知识,解题的关键是作辅助线,并熟练掌握全等三角形的判定方法,特别是第三问,辅助线的作法是关键.
8.如图,点O是正方形ABCD两条对角线的交点,分别延长CO到点G,OC到点E,使OG=2OD、OE=2OC,然后以OG、OE为邻边作正方形OEFG.
(1)如图1,若正方形OEFG的对角线交点为M,求证:四边形CDME是平行四边形.
(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,如图2,连接AG′,DE′,求证:AG′=DE′,AG′⊥DE′;
(3)在(2)的条件下,正方形OE′F′G′的边OG′与正方形ABCD的边相交于点N,如图3,设旋转角为α(0°<α<180°),若△AON是等腰三角形,请直接写出α的值.
【答案】(1)证明见解析;(2)证明见解析;(3)α的值是22.5°或45°或112.5°或135°或157.5°.
【解析】
【分析】
(1)由四边形OEFG是正方形,得到ME=GE,根据三角形的中位线的性质得到CD∥GE,CD=GE,求得CD=GE,即可得到结论;
(2)如图2,延长E′D交AG′于H,由四边形ABCD是正方形,得到AO=OD,∠AOD=∠COD=90°,由四边形OEFG是正方形,得到OG′=OE′,∠E′OG′=90°,由旋转的性质得到∠G′OD=∠E′OC,求得∠AOG′=∠COE′,根据全等三角形的性质得到AG′=DE′,∠AG′O=∠DE′O,即可得到结论;
(3)分类讨论,根据三角形的外角的性质和等腰三角形的性质即可得到结论.
【详解】
(1)证明:∵四边形OEFG是正方形,
∴ME=GE,
∵OG=2OD、OE=2OC,
∴CD∥GE,CD=GE,
∴CD=GE,
∴四边形CDME是平行四边形;
(2)证明:如图2,延长E′D交AG′于H,
∵四边形ABCD是正方形,
∴AO=OD,∠AOD=∠COD=90°,
∵四边形OEFG是正方形,
∴OG′=OE′,∠E′OG′=90°,
∵将正方形OEFG绕点O逆时针旋转,得到正方形OE′F′G′,
∴∠G′OD=∠E′OC,
∴∠AOG′=∠COE′,
在△AG′O与△ODE′中,
,
∴△AG′O≌△ODE′
∴AG′=DE′,∠AG′O=∠DE′O,
∵∠1=∠2,
∴∠G′HD=∠G′OE′=90°,
∴AG′⊥DE′;
(3)①正方形OE′F′G′的边OG′与正方形ABCD的边AD相交于点N,如图3,
Ⅰ、当AN=AO时,
∵∠OAN=45°,
∴∠ANO=∠AON=67.5°,
∵∠ADO=45°,
∴α=∠ANO-∠ADO=22.5°;
Ⅱ、当AN=ON时,
∴∠NAO=∠AON=45°,
∴∠ANO=90°,
∴α=90°-45°=45°;
②正方形OE′F′G′的边OG′与正方形ABCD的边AB相交于点N,如图4,
Ⅰ、当AN=AO时,
∵∠OAN=45°,
∴∠ANO=∠AON=67.5°,
∵∠ADO=45°,
∴α=∠ANO+90°=112.5°;
Ⅱ、当AN=ON时,
∴∠NAO=∠AON=45°,
∴∠ANO=90°,
∴α=90°+45°=135°,
Ⅲ、当AN=AO时,旋转角a=∠ANO+90°=67.5+90=157.5°,
综上所述:若△AON是等腰三角形时,α的值是22.5°或45°或112.5°或135°或157.5°.
【点睛】
本题主要考查了正方形的性质、全等三角形的判定与性质、锐角三角函数、旋转变换的性质的综合运用,有一定的综合性,分类讨论当△AON是等腰三角形时,求α的度数是本题的难点.
9.如图1,矩形ABCD中,AB=8,AD=6;点E是对角线BD上一动点,连接CE,作EF⊥CE交AB边于点F,以CE和EF为邻边作矩形CEFG,作其对角线相交于点H.
(1)①如图2,当点F与点B重合时,CE= ,CG= ;
②如图3,当点E是BD中点时,CE= ,CG= ;
(2)在图1,连接BG,当矩形CEFG随着点E的运动而变化时,猜想△EBG的形状?并加以证明;
(3)在图1,的值是否会发生改变?若不变,求出它的值;若改变,说明理由;
(4)在图1,设DE的长为x,矩形CEFG的面积为S,试求S关于x的函数关系式,并直接写出x的取值范围.
【答案】(1), ,5, ;(2)△EBG是直角三角形,理由详见解析;(3) ;(4)S=x2﹣x+48(0≤x≤).
【解析】
【分析】
(1)①利用面积法求出CE,再利用勾股定理求出EF即可;②利用直角三角形斜边中线定理求出CE,再利用相似三角形的性质求出EF即可;
(2)根据直角三角形的判定方法:如果一个三角形一边上的中线等于这条边的一半,则这个三角形是直角三角形即可判断;
(3)只要证明△DCE∽△BCG,即可解决问题;
(4)利用相似多边形的性质构建函数关系式即可;
【详解】
(1)①如图2中,
在Rt△BAD中,BD==10,
∵S△BCD=•CD•BC=•BD•CE,
∴CE=.CG=BE=.
②如图3中,过点E作MN⊥AM交AB于N,交CD于M.
∵DE=BE,
∴CE=BD=5,
∵△CME∽△ENF,
∴,
∴CG=EF=,
(2)结论:△EBG是直角三角形.
理由:如图1中,连接BH.
在Rt△BCF中,∵FH=CH,
∴BH=FH=CH,
∵四边形EFGC是矩形,
∴EH=HG=HF=HC,
∴BH=EH=HG,
∴△EBG是直角三角形.
(3)F如图1中,∵HE=HC=HG=HB=HF,
∴C、E、F、B、G五点共圆,
∵EF=CG,
∴∠CBG=∠EBF,
∵CD∥AB,
∴∠EBF=∠CDE,
∴∠CBG=∠CDE,
∵∠DCB=∠ECG=90°,
∴∠DCE=∠BCG,
∴△DCE∽△BCG,
∴.
(4)由(3)可知:
,
∴矩形CEFG∽矩形ABCD,
∴,
∵CE2=(-x)2+)2,S矩形ABCD=48,
∴S矩形CEFG= [(-x)2+()2].
∴矩形CEFG的面积S=x2-x+48(0≤x≤).
【点睛】
本题考查相似三角形综合题、矩形的性质、相似三角形的判定和性质、勾股定理、直角三角形的判定和性质、相似多边形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造相似三角形或直角三角形解决问题,属于中考压轴题.
10.如图1,若分别以△ABC的AC、BC两边为边向外侧作的四边形ACDE和BCFG为正方形,则称这两个正方形为外展双叶正方形.
(1)发现:如图2,当∠C=90°时,求证:△ABC与△DCF的面积相等.
(2)引申:如果∠C90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;
(3)运用:如图3,分别以△ABC的三边为边向外侧作的四边形ACDE、BCFG和ABMN为正方形,则称这三个正方形为外展三叶正方形.已知△ABC中,AC=3,BC=4.当∠C=_____°时,图中阴影部分的面积和有最大值是________.
【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.
【解析】
试题分析:(1)因为AC=DC,∠ACB=∠DCF=90°,BC=FC,所以△ABC≌△DFC,从而△ABC与△DFC的面积相等;
(2)延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.得到四边形ACDE,BCFG均为正方形,AC=CD,BC=CF,∠ACP=∠DCQ.所以△APC≌△DQC.
于是AP=DQ.又因为S△ABC=BC•AP,S△DFC=FC•DQ,所以S△ABC=S△DFC;
(3)根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.所以S阴影部分面积和=3S△ABC=3××3×4=18.
(1)证明:在△ABC与△DFC中,
∵,
∴△ABC≌△DFC.
∴△ABC与△DFC的面积相等;
(2)解:成立.理由如下:
如图,延长BC到点P,过点A作AP⊥BP于点P;过点D作DQ⊥FC于点Q.
∴∠APC=∠DQC=90°.
∵四边形ACDE,BCFG均为正方形,
∴AC=CD,BC=CF,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,
∴∠ACP=∠DCQ.
∴,
△APC≌△DQC(AAS),
∴AP=DQ.
又∵S△ABC=BC•AP,S△DFC=FC•DQ,
∴S△ABC=S△DFC;
(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,
若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,
∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.
∴S阴影部分面积和=3S△ABC=3××3×4=18.
考点:四边形综合题
11.如图1,在长方形纸片ABCD中,AB=mAD,其中m⩾1,将它沿EF折叠(点E. F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD相交于点P,连接EP.设,其中0<n⩽1.
(1)如图2,当n=1(即M点与D点重合),求证:四边形BEDF为菱形;
(2)如图3,当(M为AD的中点),m的值发生变化时,求证:EP=AE+DP;
(3)如图1,当m=2(即AB=2AD),n的值发生变化时,的值是否发生变化?说明理由.
【答案】(1)证明见解析;(2)证明见解析;(3)值不变,理由见解析.
【解析】
试题分析:(1)由条件可知,当n=1(即M点与D点重合),m=2时,AB=2AD,设AD=a,则AB=2a,由矩形的性质可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出结论.
(2)延长PM交EA延长线于G,由条件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性质就可以得出结论.
(3)如图1,连接BM交EF于点Q,过点F作FK⊥AB于点K,交BM于点O,通过证明△ABM∽△KFE,就可以得出,即,由AB=2AD=2BC,BK=CF就可以得出的值是为定值.
(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°.
∵AB=mAD,且n=2,∴AB=2AD.
∵∠ADE+∠EDF=90°,∠EDF+∠NDF=90°,∴∠ADE=∠NDF.
在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,
∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.
∵FN=FC,∴AE=FC.
∵AB=CD,∴AB-AE="CD-CF." ∴BE="DF." ∴BE=DE.
Rt△AED中,由勾股定理,得,即,∴AE=AD.
∴BE=2AD-AD=.
∴.
(2)如图3,延长PM交EA延长线于G,∴∠GAM=90°.
∵M为AD的中点,∴AM=DM.
∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,AB∥CD.
∴∠GAM=∠PDM.
在△GAM和△PDM中,∠GAM=∠PDM,AM=DM,∠AMG=∠DMP,
∴△GAM≌△PDM(ASA).∴MG=MP.
在△EMP和△EMG中,PM=GM,∠PME=∠GME,ME=ME,
∴△EMP≌△EMG(SAS).∴EG=EP.
∴AG+AE=EP.∴PD+AE=EP,即EP=AE+DP.
(3),值不变,理由如下:
如图1,连接BM交EF于点Q,过点F作FK⊥AB于点K,交BM于点O,
∵EM=EB,∠MEF=∠BEF,∴EF⊥MB,即∠FQO=90°.
∵四边形FKBC是矩形,∴KF=BC,FC=KB.
∵∠FKB=90°,∴∠KBO+∠KOB=90°.
∵∠QOF+∠QFO=90°,∠QOF=∠KOB,∴∠KBO=∠OFQ.
∵∠A=∠EKF=90°,∴△ABM∽△KFE.
∴即.
∵AB=2AD=2BC,BK=CF,∴.
∴的值不变.
考点:1.折叠问题;2.矩形的性质;3.全等三角形的判定和性质;4.勾股定理;5.相似三角形的判定和性质.
12.已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.
(1)如图①,当四边形EFGH为正方形时,求△GFC的面积;
(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用a表示);
(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.
【答案】(1)10;(2)12-a;(3)不能
【解析】
解:(1)过点G作GM⊥BC于M.在正方形EFGH中,
∠HEF=90°,EH=EF,
∴∠AEH+∠BEF=90°.
∵∠AEH+∠AHE=90°,
∴∠AHE=∠BEF.
又∵∠A=∠B=90°,
∴△AHE≌△BEF.
同理可证△MFG≌△BEF.
∴GM=BF=AE=2.∴FC=BC-BF=10.
∴.
(2)过点G作GM⊥BC交BC的延长线于M,连接HF.
∵AD∥BC,∴∠AHF=∠MFH.
∵EH∥FG,∴∠EHF=∠GFH.
∴∠AHE=∠MFG.
又∵∠A=∠GMF=90°,EH=GF,
∴△AHE≌△MFG.∴GM=AE=2.
∴.
(3)△GFC的面积不能等于2.
说明一:∵若S△GFC=2,则12-a=2,∴a=10.
此时,在△BEF中,
.
在△AHE中,
,
∴AH>AD,即点H已经不在边AD上,故不可能有S△GFC=2.
说明二:△GFC的面积不能等于2.∵点H在AD上,
∴菱形边EH的最大值为,∴BF的最大值为.
又∵函数S△GFC=12-a的值随着a的增大而减小,
∴S△GFC的最小值为.
又∵,∴△GFC的面积不能等于2.
13.已知,以为边在外作等腰,其中.
(1)如图①,若,,求的度数.
(2)如图②,,,,.
①若,,的长为______.
②若改变的大小,但,的面积是否变化?若不变,求出其值;若变化,说明变化的规律.
【答案】(1)120°;(2)①2;②2
【解析】
试题分析:(1)根据SAS,可首先证明△AEC≌△ABD,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC的度数;
(2)①如图2,在△ABC外作等边△BAE,连接CE,利用旋转法证明△EAC≌△BAD,可证∠EBC=90°,EC=BD=6,因为BC=4,在Rt△BCE中,由勾股定理求BE即可;
②过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK,仿照(2)利用旋转法证明△EAC≌△BAD,求得EC=DB,利用勾股定理即可得出结论.
试题解析:
解:(1)∵AE=AB,AD=AC,
∵∠EAB=∠DAC=60°,
∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,
∴∠EAC=∠DAB,
在△AEC和△ABD中
∴△AEC≌△ABD(SAS),
∴∠AEC=∠ABD,
∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,
∴∠BFC=∠AEB+∠ABE=120°,
故答案为120°;
(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.
由(1)可知△EAC≌△BAD.
∴EC=BD.
∴EC=BD=6,
∵∠BAE=60°,∠ABC=30°,
∴∠EBC=90°.
在RT△EBC中,EC=6,BC=4,
∴EB===2
∴AB=BE=2.
②若改变α,β的大小,但α+β=90°,△ABC的面积不变化,
以下证明:如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.
∵AH⊥BC于H,
∴∠AHC=90°.
∵BE∥AH,
∴∠EBC=90°.
∵∠EBC=90°,BE=2AH,
∴EC2=EB2+BC2=4AH2+BC2.
∵K为BE的中点,BE=2AH,
∴BK=AH.
∵BK∥AH,
∴四边形AKBH为平行四边形.
又∵∠EBC=90°,
∴四边形AKBH为矩形.∠ABE=∠ACD,
∴∠AKB=90°.
∴AK是BE的垂直平分线.
∴AB=AE.
∵AB=AE,AC=AD,∠ABE=∠ACD,
∴∠EAB=∠DAC,
∴∠EAB+∠EAD=∠DAC+∠EAD,
即∠EAC=∠BAD,
在△EAC与△BAD中
∴△EAC≌△BAD.
∴EC=BD=6.
在RT△BCE中,BE==2,
∴AH=BE=,
∴S△ABC=BC•AH=2
考点:全等三角形的判定与性质;等腰三角形的性质
14.已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.
(1)求证:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF满足何种关系时,四边形 AMCN是菱形,证明你的结论.
【答案】(1)证明见解析;(2)当AB=AF时,四边形AMCN是菱形.证明见解析;
【解析】
试题分析:(1)由已知条件可得四边形AMCN是平行四边形,从而可得AM=CN,再由AB=CD,∠B=∠D=90°,利用HL即可证明;
(2)若四边形AMCN为菱形,则有AM=AN,从已知可得∠BAM=∠FAN,又∠B=∠F=90°,所以有△ABM≌△AFN,从而
展开阅读全文