1、大学生校园网VvSchool.CN 线性代数 综合测试题大学线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题2分,共10分)1. 若,则_。2若齐次线性方程组只有零解,则应满足 。 3已知矩阵,满足,则与分别是 阶矩阵。4矩阵的行向量组线性 。5阶方阵满足,则 。二、判断正误(正确的在括号内填“”,错误的在括号内填“”。每小题2分,共10分)1. 若行列式中每个元素都大于零,则。( )2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组中,如果与对应的分量成比例,则向量组线性相关。( )4. ,则。( )5. 若为可逆矩阵的特征值,则的特征值为。 ( )三、单项
2、选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2分,共10分) 1. 设为阶矩阵,且,则( )。 42. 维向量组 (3 s n)线性无关的充要条件是( )。 中任意两个向量都线性无关 中存在一个向量不能用其余向量线性表示 中任一个向量都不能用其余向量线性表示 中不含零向量3. 下列命题中正确的是( )。 任意个维向量线性相关 任意个维向量线性无关 任意个 维向量线性相关 任意个 维向量线性无关4. 设,均为n 阶方阵,下面结论正确的是( )。 若,均可逆,则可逆 若,均可逆,则 可逆 若可逆,则 可逆 若可逆,则 ,均可逆5. 若是线性方程组的基础解系,则是的( ) 解向
3、量 基础解系 通解 A的行向量四、计算题 ( 每小题9分,共63分)1. 计算行列式。解2. 设,且 求。解. ,3. 设 且矩阵满足关系式 求。4. 问取何值时,下列向量组线性相关?。5. 为何值时,线性方程组有唯一解,无解和有无穷多解?当方程组有无穷多解时求其通解。 当且时,方程组有唯一解;当时方程组无解当时,有无穷多组解,通解为6. 设 求此向量组的秩和一个极大无关组,并将其余向量用该极大无关组线性表示。7. 设,求的特征值及对应的特征向量。五、证明题 (7分)若是阶方阵,且 证明 。其中为单位矩阵。大学线性代数期末考试题答案一、填空题1. 5 2. 3. 4. 相关 5. 二、判断正误1. 2. 3. 4. 5. 三、单项选择题1. 2. 3. 4. 5. 四、计算题1. 2. ,3. 4. 当或时,向量组线性相关。5. 当且时,方程组有唯一解;当时方程组无解当时,有无穷多组解,通解为6. 则 ,其中构成极大无关组,7. 特征值,对于11,特征向量为五、证明题, 共3页第6页