1、本文格式为Word版,下载可任意编辑高一数学必修书的主要学问点分析 假如数学课没有确定的速度,那是一种无效学习。慢腾腾的学习是训练不出思维速度和思维的灵敏性,是培育不出数学力量的,这就要求在数学学习中确定要有节奏,这样久而久之,思维的灵敏性和数学力量会逐步提高。我整理的高一数学必修书的主要学问点分析,期望大家能够宠爱! 高一数学必修书的主要学问点分析1 复数定义 我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复
2、数域中总有根。 复数表达式 虚数是与任何事物没有联系的,是确定的,所以符合的表达式为: a=a+ia为实部,i为虚部 复数运算法则 加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i; 减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i; 乘法法则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i; 除法法则:(a+bi)/(c+di)=(ac+bd)/(c2+d2)+(bc-ad)/(c2+d2)i. 例如:(a+bi)+(c+di)-(a+c)+(b+d)i=0,最终结果还是0,也就在数字中没有复数的存在。(a+bi)+(c+di)-(a+c)+(b+d)
3、i=z是一个函数。 复数与几何 几何形式 复数z=a+bi被复平面上的点z(a,b)确定。这种形式使复数的问题可以借助图形来争辩。也可反过来用复数的理论解决一些几何问题。 向量形式 复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何解释。 三角形式 复数z=a+bi化为三角形式 高一数学必修书的主要学问点分析2 1.“包含”关系子集 留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA 2.“相等”关系(55,且55,则5=5) 实例:设A=_2-
4、1=0B=-1,1“元素相同” 结论:对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B 任何一个集合是它本身的子集。AA 真子集:假如AB,且A1B那就说集合A是集合B的真子集,记作AB(或BA) 假如AB,BC,那么AC 假如AB同时BA那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集 高一数学必修书的主要学问点分析3 (1)直线的倾斜角 定义:_轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与_轴平行或重合时,我们规定它的倾斜
5、角为0度。因此,倾斜角的取值范围是0180 (2)直线的斜率 定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 过两点的直线的斜率公式: 留意下面四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90; (2)k与P1、P2的挨次无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 点斜式:直线斜率k,且过点 留意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表
6、示.但因l上每一点的横坐标都等于_1,所以它的方程是_=_1。 斜截式:,直线斜率为k,直线在y轴上的截距为b 两点式:()直线两点, 截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。 一般式:(A,B不全为0) 一般式:(A,B不全为0) 留意:1各式的适用范围 2特殊的方程如:平行于_轴的直线:(b为常数);平行于y轴的直线:(a为常数); (4)直线系方程:即具有某一共同性质的直线 高一数学必修书的主要学问点分析相关文章: 高一数学必修一学问点汇总 高中数学高一数学必修一学问点 高一数学必修一学问点总结 高一数学必修一函数学问点分析 高一数学必修1学问点归纳 高一数学必修1学问点汇总 高一数学学问点总结(考前必看) 高一数学必修1各章学问点总结 高一数学必修一学问点梳理 高一数学必修一学问点总结归纳 第 4 页 共 4 页