收藏 分销(赏)

高优指导2021版高考数学一轮复习第八章立体几何37平行关系考点规范练文北师大版.doc

上传人:二*** 文档编号:4433728 上传时间:2024-09-22 格式:DOC 页数:7 大小:650KB
下载 相关 举报
高优指导2021版高考数学一轮复习第八章立体几何37平行关系考点规范练文北师大版.doc_第1页
第1页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、考点规范练37平行关系考点规范练A册第28页基础巩固组1.对于空间的两条直线m,n和一个平面,下列命题中的真命题是() A.若m,n,则mnB.若m,n,则mnC.若m,n,则mnD.若m,n,则mn答案:D解析:对A,直线m,n可能平行、异面或相交,故A错误;对B,直线m与n可能平行,也可能异面,故B错误;对C,m与n垂直而非平行,故C错误;对D,垂直于同一平面的两直线平行,故D正确.2.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB平面MNP的图形的序号是()A.B.C.D.答案:C解析:对于图形,平面MNP与AB所在的对角面平行,即可得到AB平

2、面MNP;对于图形,ABPN,即可得到AB平面MNP;图形无论用定义还是判定定理都无法证明线面平行.3.设l表示直线,表示平面.给出四个结论:如果l,则内有无数条直线与l平行;如果l,则内任意的直线与l平行;如果,则内任意的直线与平行;如果,对于内的一条确定的直线a,在内仅有唯一的直线与a平行.以上四个结论中,正确结论的个数为()A.0B.1C.2D.3答案:C解析:中内的直线与l可异面,中可有无数条.4.平面平面的一个充分条件是()A.存在一条直线a,a,aB.存在一条直线a,a,aC.存在两条平行直线a,b,a,b,a,bD.存在两条异面直线a,b,a,b,a,b答案:D解析:若=l,al

3、,a,a,则a,a,故排除A.若=l,a,al,则a,故排除B.若=l,a,al,b,bl,则a,b,故排除C.选D.5.已知平面和不重合的两条直线m,n,下列选项正确的是()A.如果m,n,m,n是异面直线,那么nB.如果m,n与相交,那么m,n是异面直线C.如果m,n,m,n共面,那么mnD.如果m,nm,那么n答案:C解析:如图(1)可知A错;如图(2)可知B错;如图(3),m,n是内的任意直线,都有nm,故D错.n,n与无公共点,m,n与m无公共点,又m,n共面,mn,故选C.6.如图,四边形ABCD是边长为1的正方形,MD平面ABCD,NB平面ABCD,且MD=NB=1,G为MC的中

4、点.则下列结论中不正确的是()A.MCANB.GB平面AMNC.平面CMN平面AMND.平面DCM平面ABN导学号32470502答案:C解析:显然该几何图形为正方体截去两个三棱锥所剩的几何体,把该几何体放置到正方体中(如图),取AN的中点H,连接HB,MH,则MCHB,又HBAN,所以MCAN,所以A正确;由题意易得GBMH,又GB平面AMN,MH平面AMN,所以GB平面AMN,所以B正确;因为ABCD,DMBN,且ABBN=B,CDDM=D,所以平面DCM平面ABN,所以D正确.7.设l,m,n表示不同的直线,表示不同的平面,给出下列三个命题:若ml,且m,则l;若=l,=m,=n,则lm

5、n;若=m,=l,=n,且n,则lm.其中正确命题的个数是()A.1B.2C.3D.0答案:B解析:对,两条平行线中有一条与一平面垂直,则另一条也与这个平面垂直,故正确;对,三条交线除了平行,还可能相交于同一点,故错误;对,结合线面平行的判定定理和性质定理可判断其正确.综上正确.故选B.8.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有条.答案:6解析:过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符

6、合题意的直线共6条.9.如图,四棱锥P-ABCD的底面是一直角梯形,ABCD,BAAD,CD=2AB,PA底面ABCD,E为PC的中点,则BE与平面PAD的位置关系为.答案:平行解析:取PD的中点F,连接EF,AF,在PCD中,EF􀱀CD.又ABCD且CD=2AB,EF􀱀AB,四边形ABEF是平行四边形,EBAF.又EB平面PAD,AF平面PAD,BE平面PAD.10.在正四棱柱ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,则点Q满足条件时,有平面D1BQ平面PAO.导学号32470503答案:Q为CC1的中点解

7、析:如图,假设Q为CC1的中点,因为P为DD1的中点,所以QBPA.连接DB,因为P,O分别是DD1,DB的中点,所以D1BPO.又D1B平面PAO,QB平面PAO,所以D1B平面PAO,QB平面PAO.又D1BQB=B,所以平面D1BQ平面PAO.故Q满足条件Q为CC1的中点时,有平面D1BQ平面PAO.11.(2015山东,文18改编)如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.求证:BD平面FGH.证明:(方法一)连接DG,CD,设CDGF=M.连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DFGC,DF=GC,所以四边形DFCG为平

8、行四边形.则M为CD的中点.又H为BC的中点,所以HMBD,又HM平面FGH,BD平面FGH,所以BD平面FGH.(方法二)在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BHEF,BH=EF,所以四边形HBEF为平行四边形,可得BEHF.在ABC中,G为AC的中点,H为BC的中点,所以GHAB.又GHHF=H,所以平面FGH平面ABED.因为BD平面ABED,所以BD平面FGH.12.如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE平面DMF;(2)平面BDE平面MNG.证明:(1)连接AE,则AE必过DF与GN的交点O,连接MO

9、,则MO为ABE的中位线,所以BEMO,又BE平面DMF,MO平面DMF,所以BE平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DEGN,又DE平面MNG,GN平面MNG,所以DE平面MNG.又M为AB的中点,所以MN为ABD的中位线,所以BDMN,又MN平面MNG,BD平面MNG,所以BD平面MNG,又DE,BD平面BDE,DEBD=D,所以平面BDE平面MNG.能力提升组13.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AEEB=AFFD=14.又H,G分别为BC,CD的中点,则()A.BD平面EFG,且四边形EFGH是平行四边形B.EF平面BC

10、D,且四边形EFGH是梯形C.HG平面ABD,且四边形EFGH是平行四边形D.EH平面ADC,且四边形EFGH是梯形导学号32470504答案:B解析:如图,由题意得,EFBD,且EF=BD.HGBD,且HG=BD,EFHG,且EFHG.四边形EFGH是梯形.又EF平面BCD,而EH与平面ADC不平行,故B正确.14.设m,n是平面内的两条不同直线,l1,l2是平面内的两条相交直线,则的一个充分不必要条件是()A.m,且l1B.ml1,且nl2C.m,且nD.m,且nl2答案:B解析:对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1m可得l1,同理可得l2,故可得,充分性

11、成立,而由不一定能得到l1m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故是必要不充分条件;对于选项D,由于nl2可转化为n,同选项C,故不符合题意.综上选B.15.设,为三个不同的平面,m,n是两条不同的直线,在命题“=m,n,且,则mn”中的横线处填入下列三组条件中的一组,使该命题为真命题.,n;m,n;n,m.可以填入的条件有()A.B.C.D.导学号32470505答案:C解析:由面面平行的性质定理可知,正确;当n,m时,n和m在同一平面内,且没有公共点,所以平行,正确.选C.16.在三棱锥S-ABC中,ABC是边长为6的正三角形,SA=SB=SC=15

12、,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H.D,E分别是AB,BC的中点,如果直线SB平面DEFH,那么四边形DEFH的面积为.答案:解析:取AC的中点G,连接SG,BG.易知SGAC,BGAC,故AC平面SGB,所以ACSB.因为SB平面DEFH,SB平面SAB,平面SAB平面DEFH=HD,则SBHD.同理SBFE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF􀱀AC􀱀DE,所以四边形DEFH为平行四边形.又ACSB,SBHD,DEAC,所以DEHD,所以四边形DEFH为矩形,其面积S=HFHD=.17.如图,

13、已知正方形ABCD的边长为6,点E,F分别在边AB,AD上,AE=AF=4,现将AEF沿线段EF折起到AEF位置,使得AC=2.(1)求五棱锥A-BCDFE的体积;(2)在线段AC上是否存在一点M,使得BM平面AEF?若存在,求AM;若不存在,请说明理由.解:(1)连接AC,设ACEF=H,连接AH.四边形ABCD是正方形,AE=AF=4,H是EF的中点,且EFAH,EFCH,从而有AHEF,CHEF,又AHCH=H,所以EF平面AHC,且EF平面ABCD,从而平面AHC平面ABCD,过点A作AOHC,与HC相交于点O,则AO平面ABCD,因为正方形ABCD的边长为6,AE=AF=4,故AH=

14、2,CH=4,所以cosAHC=,所以HO=AHcosAHC=,则AO=,所以五棱锥A-BCDFE的体积V=.(2)线段AC上存在点M,使得BM平面AEF,此时AM=.证明如下:连接OM,BD,BM,DM,且易知BD过O点.AM=AC,HO=HC,所以OMAH,又OM平面AEF,AH平面AEF,所以OM平面AEF,又BDEF,BD平面AEF,EF平面AEF,所以BD平面AEF,又BDOM=O,所以平面MBD平面AEF,因为BM平面MBD,所以BM平面AEF.导学号3247050618.如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2.点G,E,F,H分别是棱PB,AB,CD,

15、PC上共面的四点,平面GEFH平面ABCD,BC平面GEFH.(1)证明:GHEF;(2)若EB=2,求四边形GEFH的面积.(1)证明:因为BC平面GEFH,BC平面PBC,且平面PBC平面GEFH=GH,所以GHBC.同理可证:EFBC,因此GHEF.(2)解:连接AC,BD交于点O,BD交EF于点K,连接OP,GK.因为PA=PC,O是AC的中点,所以POAC,同理可得POBD.又BDAC=O,且AC,BD都在底面内,所以PO底面ABCD.又因为平面GEFH平面ABCD,且PO平面GEFH,所以PO平面GEFH.因为平面PBD平面GEFH=GK,所以POGK,且GK底面ABCD,从而GKEF.所以GK是梯形GEFH的高.由AB=8,EB=2,得EBAB=KBDB=14,从而KB=DB=OB,即K为OB的中点.再由POGK,得GK=PO,即G是PB的中点,且GH=BC=4.由已知可得OB=4,PO=6,所以GK=3.故四边形GEFH的面积S=GK=3=18.7

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服