收藏 分销(赏)

高二数学下学期知识点.docx

上传人:胜**** 文档编号:4160252 上传时间:2024-08-07 格式:DOCX 页数:5 大小:13.71KB
下载 相关 举报
高二数学下学期知识点.docx_第1页
第1页 / 共5页
高二数学下学期知识点.docx_第2页
第2页 / 共5页
高二数学下学期知识点.docx_第3页
第3页 / 共5页
高二数学下学期知识点.docx_第4页
第4页 / 共5页
高二数学下学期知识点.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 高二数学下学期知识点 极值的定义: (1)极大值:一般地,设函数f(x)在点x0四周有定义,假如对x0四周的全部的点,都有f(x) (2)微小值:一般地,设函数f(x)在x0四周有定义,假如对x0四周的全部的点,都有f(x)f(x0),就说f(x0)是函数f(x)的一个微小值,记作y微小值=f(x0),x0是微小值点。 极值的性质: (1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它四周点的函数值比拟是或最小,并不意味着它在函数的整个的定义域内或最小; (2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或微小值可以不止一个; (3)极大值与微小值之间无确定的大小关系,

2、即一个函数的极大值未必大于微小值; (4)函数的极值点肯定消失在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。 求函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数f(x); (2)求方程f(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f(x)在方程根左右的值的符号,假如左正右负,那么f(x)在这个根处取得极大值;假如左负右正,那么f(x)在这个根处取得微小值;假如左右不转变符号即都为正或都为负,则f(x)在这个根处无极值。 高二数学下学期学问点2 1.定义法: 推断B是A的

3、条件,实际上就是推断B=A或者A=B是否成立,只要把题目中所给的条件按规律关系画出箭头示意图,再利用定义推断即可。 2.转换法: 当所给命题的充要条件不易推断时,可对命题进展等价装换,例如改用其逆否命题进展推断。 3.集合法 在命题的条件和结论间的关系推断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则: 若A?B,则p是q的充分条件。 若A?B,则p是q的必要条件。 若A=B,则p是q的充要条件。 若A?B,且B?A,则p是q的既不充分也不必要条件。 高二数学下学期学问点3 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特殊

4、地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满意等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交

5、于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k0时,直线必通过一、三象限,y随x的增大而增大; 当k0时,直线必通过二、四象限,y随x的增大而减小。 当b0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b0时,直线必通过三、四象限。 特殊地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。 四、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)由于

6、在一次函数上的任意一点P(x,y),都满意等式y=kx+b。所以可以列出2个方程:y1=kx1+b和y2=kx2+b (3)解这个二元一次方程,得到k,b的值。 (4)最终得到一次函数的表达式。 五、一次函数在生活中的应用: 1.当时间t肯定,距离s是速度v的一次函数。s=vt。 2.当水池抽水速度f肯定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。 六、常用公式:(不全,盼望有人补充) 1.求函数图像的k值:(y1-y2)/(x1-x2) 2.求与x轴平行线段的中点:|x1-x2|/2 3.求与y轴平行线段的中点:|y1-y2|/2 4.求任意线段的长:(x1-x2)2+(y1-y2)2(注:根号下(x1-x2)与(y1-y2)的平方和)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服