收藏 分销(赏)

高二数学必修五的相关知识点.docx

上传人:胜**** 文档编号:4160243 上传时间:2024-08-07 格式:DOCX 页数:8 大小:15.39KB
下载 相关 举报
高二数学必修五的相关知识点.docx_第1页
第1页 / 共8页
高二数学必修五的相关知识点.docx_第2页
第2页 / 共8页
高二数学必修五的相关知识点.docx_第3页
第3页 / 共8页
高二数学必修五的相关知识点.docx_第4页
第4页 / 共8页
高二数学必修五的相关知识点.docx_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、 高二数学必修五的相关知识点 (一)解三角形: 1、正弦定理:在中,、分别为角、的对边,则有 (为的外接圆的半径) 2、正弦定理的变形公式:,; ,; 3、三角形面积公式:. 4、余弦定理:在中,有,推论: (二)数列: 1.数列的有关概念: (1)数列:根据肯定次序排列的一列数。数列是有序的。数列是定义在自然数N_或它的有限子集1,2,3,n上的函数。 (2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。 (3)递推公式:已知数列an的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的

2、递推公式。 如:。 2.数列的表示(方法): (1)列举法:如1,3,5,7,9,(2)图象法:用(n,an)孤立点表示。 (3)解析法:用通项公式表示。(4)递推法:用递推公式表示。 3.数列的分类: 4.数列an及前n项和之间的关系: 5.等差数列与等比数列比照小结: 等差数列等比数列 一、定义 二、公式1. 2. 1. 2. 三、性质1., 称为与的等差中项 2.若(、),则 3.,成等差数列 1., 称为与的等比中项 2.若(、),则 3.,成等比数列 (三)不等式 1、;. 2、不等式的性质:; ,; ; . 小结:代数式的大小比拟或证明通常用作差比拟法:作差、化积(商)、推断、结论

3、。 在字母比拟的选择或填空题中,常采纳特值法验证。 3、一元二次不等式解法: (1)化成标准式:;(2)求出对应的一元二次方程的根; (3)画出对应的二次函数的图象;(4)依据不等号方向取出相应的解集。 线性规划问题: 1.了解线性约束条件、目标函数、可行域、可行解、解 2.线性规划问题:求线性目标函数在线性约束条件下的值或最小值问题. 3.解线性规划实际问题的步骤: (1)将数据列成表格;(2)列出约束条件与目标函数;(3)依据求最值方法:画:画可行域;移:移与目标函数全都的平行直线;求:求最值点坐标;答;求最值;(4)验证。 两类主要的目标函数的几何意义: -直线的截距;-两点的距离或圆的

4、半径; 4、均值定理:若,则,即.; 称为正数、的算术平均数,称为正数、的几何平均数. 5、均值定理的应用:设、都为正数,则有 若(和为定值),则当时,积取得值. 若(积为定值),则当时,和取得最小值. 留意:在应用的时候,必需留意“一正二定三等”三个条件同时成立。 高二数学必修五的相关学问点2 1.等差数列通项公式 an=a1+(n-1)d n=1时a1=S1 n2时an=Sn-Sn-1 an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b 2.等差中项 由三个数a,A,b组成的等差数列可以堪称最简洁的等差数列。这时,A叫做a与b的等差中项(

5、arithmeticmean)。 有关系:A=(a+b)2 3.前n项和 倒序相加法推导前n项和公式: Sn=a1+a2+a3+an =a1+(a1+d)+(a1+2d)+a1+(n-1)d Sn=an+an-1+an-2+a1 =an+(an-d)+(an-2d)+an-(n-1)d 由+得2Sn=(a1+an)+(a1+an)+(a1+an)(n个)=n(a1+an) Sn=n(a1+an)2 等差数列的前n项和等于首末两项的和与项数乘积的一半: Sn=n(a1+an)2=na1+n(n-1)d2 Sn=dn22+n(a1-d2) 亦可得 a1=2snn-an=sn-n(n-1)d2n a

6、n=2snn-a1 好玩的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1 4.等差数列性质 一、任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式。 二、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=ak+an-k+1,kN_ 三、若m,n,p,qN_,且m+n=p+q,则有am+an=ap+aq 四、对任意的kN_,有 Sk,S2k-Sk,S3k-S2k,Snk-S(n-1)k成等差数列。 高二数学必修五的相关学问点3 集合的分类: (1)按元素属性分类,如点集,数集。 (2)按元素的个

7、数多少,分为有/无限集 关于集合的概念: (1)确定性:作为一个集合的元素,必需是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。 (2)互异性:对于一个给定的集合,集合中的元素肯定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,一样的对象归入同一个集合时只能算作集合的一个元素。 (3)无序性:推断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。 集合可以依据它含有的元素的个数分为两类: 含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 非负整数全体构成的集合,叫做自然数集,记

8、作N; 在自然数集内排解0的集合叫做正整数集,记作N+或N_; 整数全体构成的集合,叫做整数集,记作Z; 有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。) 实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。) 1.列举法:假如一个集合是有限集,元素又不太多,经常把集合的全部元素都列举出来,写在花括号“”内表示这个集合,例如,由两个元素0,1构成的集合可表示为0,1. 有些集合的元素较多,元素的排列又呈现肯定的规律,在不致于

9、发生误会的状况下,也可以列出几个元素作为代表,其他元素用省略号表示。 例如:不大于100的自然数的全体构成的集合,可表示为0,1,2,3,100. 无限集有时也用上述的列举法表示,例如,自然数集N可表示为1,2,3,n,. 2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。 例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0” 而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为 xRx能被2整除,且大于0或xRx=2n,nN+, 大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。 一般地,假如在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为xIp(x) 它表示集合A是由集合I中具有性质p(x)的全部元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。 例如:集合A=xRx2-1=0的特征是X2-1=0

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服