ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:15.39KB ,
资源ID:4160243      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4160243.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高二数学必修五的相关知识点.docx)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高二数学必修五的相关知识点.docx

1、 高二数学必修五的相关知识点 (一)解三角形: 1、正弦定理:在中,、分别为角、的对边,则有 (为的外接圆的半径) 2、正弦定理的变形公式:,; ,; 3、三角形面积公式:. 4、余弦定理:在中,有,推论: (二)数列: 1.数列的有关概念: (1)数列:根据肯定次序排列的一列数。数列是有序的。数列是定义在自然数N_或它的有限子集1,2,3,n上的函数。 (2)通项公式:数列的第n项an与n之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。如:。 (3)递推公式:已知数列an的第1项(或前几项),且任一项an与他的前一项an-1(或前几项)可以用一个公式来表示,这个公式即是该数列的

2、递推公式。 如:。 2.数列的表示(方法): (1)列举法:如1,3,5,7,9,(2)图象法:用(n,an)孤立点表示。 (3)解析法:用通项公式表示。(4)递推法:用递推公式表示。 3.数列的分类: 4.数列an及前n项和之间的关系: 5.等差数列与等比数列比照小结: 等差数列等比数列 一、定义 二、公式1. 2. 1. 2. 三、性质1., 称为与的等差中项 2.若(、),则 3.,成等差数列 1., 称为与的等比中项 2.若(、),则 3.,成等比数列 (三)不等式 1、;. 2、不等式的性质:; ,; ; . 小结:代数式的大小比拟或证明通常用作差比拟法:作差、化积(商)、推断、结论

3、。 在字母比拟的选择或填空题中,常采纳特值法验证。 3、一元二次不等式解法: (1)化成标准式:;(2)求出对应的一元二次方程的根; (3)画出对应的二次函数的图象;(4)依据不等号方向取出相应的解集。 线性规划问题: 1.了解线性约束条件、目标函数、可行域、可行解、解 2.线性规划问题:求线性目标函数在线性约束条件下的值或最小值问题. 3.解线性规划实际问题的步骤: (1)将数据列成表格;(2)列出约束条件与目标函数;(3)依据求最值方法:画:画可行域;移:移与目标函数全都的平行直线;求:求最值点坐标;答;求最值;(4)验证。 两类主要的目标函数的几何意义: -直线的截距;-两点的距离或圆的

4、半径; 4、均值定理:若,则,即.; 称为正数、的算术平均数,称为正数、的几何平均数. 5、均值定理的应用:设、都为正数,则有 若(和为定值),则当时,积取得值. 若(积为定值),则当时,和取得最小值. 留意:在应用的时候,必需留意“一正二定三等”三个条件同时成立。 高二数学必修五的相关学问点2 1.等差数列通项公式 an=a1+(n-1)d n=1时a1=S1 n2时an=Sn-Sn-1 an=kn+b(k,b为常数)推导过程:an=dn+a1-d令d=k,a1-d=b则得到an=kn+b 2.等差中项 由三个数a,A,b组成的等差数列可以堪称最简洁的等差数列。这时,A叫做a与b的等差中项(

5、arithmeticmean)。 有关系:A=(a+b)2 3.前n项和 倒序相加法推导前n项和公式: Sn=a1+a2+a3+an =a1+(a1+d)+(a1+2d)+a1+(n-1)d Sn=an+an-1+an-2+a1 =an+(an-d)+(an-2d)+an-(n-1)d 由+得2Sn=(a1+an)+(a1+an)+(a1+an)(n个)=n(a1+an) Sn=n(a1+an)2 等差数列的前n项和等于首末两项的和与项数乘积的一半: Sn=n(a1+an)2=na1+n(n-1)d2 Sn=dn22+n(a1-d2) 亦可得 a1=2snn-an=sn-n(n-1)d2n a

6、n=2snn-a1 好玩的是S2n-1=(2n-1)an,S2n+1=(2n+1)an+1 4.等差数列性质 一、任意两项am,an的关系为: an=am+(n-m)d 它可以看作等差数列广义的通项公式。 二、从等差数列的定义、通项公式,前n项和公式还可推出: a1+an=a2+an-1=a3+an-2=ak+an-k+1,kN_ 三、若m,n,p,qN_,且m+n=p+q,则有am+an=ap+aq 四、对任意的kN_,有 Sk,S2k-Sk,S3k-S2k,Snk-S(n-1)k成等差数列。 高二数学必修五的相关学问点3 集合的分类: (1)按元素属性分类,如点集,数集。 (2)按元素的个

7、数多少,分为有/无限集 关于集合的概念: (1)确定性:作为一个集合的元素,必需是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。 (2)互异性:对于一个给定的集合,集合中的元素肯定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,一样的对象归入同一个集合时只能算作集合的一个元素。 (3)无序性:推断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。 集合可以依据它含有的元素的个数分为两类: 含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 非负整数全体构成的集合,叫做自然数集,记

8、作N; 在自然数集内排解0的集合叫做正整数集,记作N+或N_; 整数全体构成的集合,叫做整数集,记作Z; 有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。) 实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。) 1.列举法:假如一个集合是有限集,元素又不太多,经常把集合的全部元素都列举出来,写在花括号“”内表示这个集合,例如,由两个元素0,1构成的集合可表示为0,1. 有些集合的元素较多,元素的排列又呈现肯定的规律,在不致于

9、发生误会的状况下,也可以列出几个元素作为代表,其他元素用省略号表示。 例如:不大于100的自然数的全体构成的集合,可表示为0,1,2,3,100. 无限集有时也用上述的列举法表示,例如,自然数集N可表示为1,2,3,n,. 2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。 例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0” 而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为 xRx能被2整除,且大于0或xRx=2n,nN+, 大括号内竖线左边的X表示这个集合的任意一个元素,元素X从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。 一般地,假如在集合I中,属于集合A的任意一个元素x都具有性质p(x),而不属于集合A的元素都不具有的性质p(x),则性质p(x)叫做集合A的一个特征性质。于是,集合A可以用它的性质p(x)描述为xIp(x) 它表示集合A是由集合I中具有性质p(x)的全部元素构成的,这种表示集合的方法,叫做特征性质描述法,简称描述法。 例如:集合A=xRx2-1=0的特征是X2-1=0

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服