收藏 分销(赏)

高一数学知识点总结.docx

上传人:可**** 文档编号:4160248 上传时间:2024-08-07 格式:DOCX 页数:8 大小:15.57KB
下载 相关 举报
高一数学知识点总结.docx_第1页
第1页 / 共8页
高一数学知识点总结.docx_第2页
第2页 / 共8页
点击查看更多>>
资源描述
高一数学知识点总结 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系: y=ax^2+bx+c (a,b,c为常数,a≠0,且a打算函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以打算开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax^2+bx+c(a,b,c为常数,a≠0) 顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)] 交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线] 注:在3种形式的相互转化中,有如下关系: h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a III.二次函数的图像 在平面直角坐标系中作出二次函数y=x^2的图像, 可以看出,二次函数的图像是一条抛物线。 IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线 x=-b/2a。 对称轴与抛物线的交点为抛物线的顶点P。 特殊地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P(-b/2a,(4ac-b^2)/4a) 当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。 3.二次项系数a打算抛物线的开口方向和大小。 当a0时,抛物线向上开口;当a0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同打算对称轴的位置。 当a与b同号时(即ab0),对称轴在y轴左; 当a与b异号时(即ab0),对称轴在y轴右。 5.常数项c打算抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 Δ=b^2-4ac0时,抛物线与x轴有2个交点。 Δ=b^2-4ac=0时,抛物线与x轴有1个交点。 Δ=b^2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a) 高一数学学问点2 1.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x); (2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数); (3)推断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为简单,应先化简,再推断其奇偶性; (5)奇函数在对称的单调区间内有一样的单调性;偶函数在对称的单调区间内有相反的单调性; 2.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);讨论函数的问题肯定要留意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数; 5.方程k=f(x)有解k∈D(D为f(x)的值域); a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min; (1)(a0,a≠1,b0,n∈R+); (2)logaN=(a0,a≠1,b0,b≠1); (3)logab的符号由口诀“同正异负”记忆; (4)alogaN=N(a0,a≠1,N0); 6.推断对应是否为映射时,抓住两点: (1)A中元素必需都有象且; (2)B中元素不肯定都有原象,并且A中不同元素在B中可以有一样的象; 7.能娴熟地用定义证明函数的单调性,求反函数,推断函数的奇偶性。 8.对于反函数,应把握以下一些结论: (1)定义域上的单调函数必有反函数; (2)奇函数的反函数也是奇函数; (3)定义域为非单元素集的偶函数不存在反函数; (4)周期函数不存在反函数; (5)互为反函数的两个函数具有一样的单调性; (6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A); 9.处理二次函数的问题勿忘数形结合 二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系; 10.依据单调性 利用一次函数在区间上的保号性可解决求一类参数的范围问题; 高一数学学问点3 幂函数的性质: 对于a的取值为非零有理数,有必要分成几种状况来争论各自的特性: 首先我们知道假如a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),明显x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 排解了为0与负数两种可能,即对于x0,则a可以是任意实数; 排解了为0这种可能,即对于x0x=0的全部实数,q不能是偶数; 排解了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为任意实数,则函数的定义域为大于0的全部实数; 假如a为负数,则x确定不能为0,不过这时函数的定义域还必需依据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自状况. 可以看到: (1)全部的图形都通过(1,1)这点。 (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 (6)明显幂函数无界。 解题(方法):换元法 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这种方法叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换讨论对象,将问题移至新对象的学问背景中去讨论,从而使非标准型问题标准化、简单问题简洁化,变得简单处理。 换元法又称帮助元素法、变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来.或者变为熟识的形式,把简单的计算和推证简化。 它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在讨论方程、不等式、函数、数列、三角等问题中有广泛的应用。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服