资源描述
一次函数及其性质
l 知识点一 一次函数的定义
一般地,形如(,是常数,)的函数,叫做一次函数,当时,即,这时即是前一节所学过的正比例函数.
⑴一次函数的解析式的形式是,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.
⑵当,时,仍是一次函数.
⑶当,时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
l 知识点二 一次函数的图象及其画法
⑴一次函数(,,为常数)的图象是一条直线.
⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.
①如果这个函数是正比例函数,通常取,两点;
②如果这个函数是一般的一次函数(),通常取,,即直线与两坐标轴的交点.
⑶由函数图象的意义知,满足函数关系式的点在其对应的图象上,这个图象就是一条直线,反之,直线上的点的坐标满足,也就是说,直线与是一一对应的,所以通常把一次函数的图象叫做直线:,有时直接称为直线.
l 知识点三 一次函数的性质
⑴当时,一次函数的图象从左到右上升,随的增大而增大;
⑵当时,一次函数的图象从左到右下降,随的增大而减小.
l 知识点四 一次函数的图象、性质与、的符号
⑴
一次
函数
,
符号
图象
性质
随的增大而增大
随的增大而减小
⑵一次函数中,当时,其图象一定经过一、三象限;当时,其图象一定经过二、四象限.
当时,图象与轴交点在轴上方,所以其图象一定经过一、二象限;当时,图象与轴交点在轴下方,所以其图象一定经过三、四象限.
反之,由一次函数的图象的位置也可以确定其系数、的符号.
l 知识点五 用待定系数法求一次函数的解析式
⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法.
⑵用待定系数法求函数解析式的一般步骤:
①根据已知条件写出含有待定系数的解析式;
②将的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组;
③解方程(组),得到待定系数的值;
④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.
类型一:点的坐标
方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;
若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;
若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;
若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;
1、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_______,b=_________;若A,B关于y轴对称,则a=_______,b=__________;若若A,B关于原点对称,则a=_______,b=_________;
举一反三:
【变式1】若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第______象限。
【变式2】若点A(m,n)在第二象限,则点(|m|,-n)在第____象限;
【变式3】若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为______________________。
类型二:关于点的距离的问题
方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示;
任意两点的距离为;
若AB∥x轴,则的距离为;
若AB∥y轴,则的距离为;
点到原点之间的距离为
2、已知点P(3,0),Q(-2,0),则PQ=__________,已知点,则MQ=________; ,则EF两点之间的距离是__________;已知点G(2,-3)、H(3,4),则G、H两点之间的距离是_________;
举一反三:
【变式1】两点(3,-4)、(5,a)间的距离是2,则a的值为__________;
【变式2】已知点A(0,2)、B(-3,-2)、C(a,b),若C点在x轴上,且∠ACB=90°,则C点坐标为___________.
【变式3】点D(a,b)到x轴的距离是_________;到y轴的距离是____________;到原点的距离是____________;
类型三:正比例函数与一次函数定义
方法:若y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数,特别的,当b=0时,一次函数就成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数,当k=0时,一次函数就成为若y=b,这时,y叫做常函数。
☆A与B成正比例óA=kB(k≠0)
3、当m为何值时,函数y=-(m-2)x+(m-4)是一次函数?
思路点拨:某函数是一次函数,除应符合y=kx+b外,还要注意条件k≠0.
举一反三:
【变式1】如果函数是正比例函数,那么( ).
A.m=2或m=0 B.m=2 C.m=0 D.m=1
【变式2】已知y-3与x成正比例,且x=2时,y=7.
(1)写出y与x之间的函数关系式;
(2)当x=4时,求y的值;
(3)当y=4时,求x的值.
【变式3】已知一次函数
(1)当m取何值时,y随x的增大而减小?
(2)当m取何值时,函数的图象过原点?
类型四:待定系数法求函数解析式
方法:依据两个独立的条件确定k,b的值,即可求解出一次函数y=kx+b(k≠0)的解析式。
☆ 已知是直线或一次函数可以设y=kx+b(k≠0);
☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。
4、求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.
思路点拨:图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.
举一反三:
【 变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg的重物时,弹簧的长度是7.2cm,求这个一次函数的表达式.
分析:题中并没给出一次函数的表达式,因此应先设一次函数的表达式y=kx+b,再由已知条件可知,当x=0时,y=6;当x=4时,y=7.2.求出k,b即可.
【变式2】已知直线y=2x+1.
(1)求已知直线与y轴交点M的坐标;
(2)若直线y=kx+b与已知直线关于y轴对称,求k,b的值.
【变式3】判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.
分析:由于两点确定一条直线,故选取其中两点,求经过这两点的函数表达式,再把第三个点的坐标代入表达式中,若成立,说明第三点在此直线上;若不成立,说明不在此直线上.
类型五:函数图象及其应用
方法:
函数
图象
性质
经过象限
变化规律
y=kx+b
(k、b为常数,
且k≠0)
k>0
b>0
b=0
b<0
k<0
b>0
b=0
b<0
☆一次函数y=kx+b(k≠0)中k、b的意义:
k(称为斜率)表示直线y=kx+b(k≠0) 的倾斜程度;
b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的 ,也表示直线在y轴上的 。
☆同一平面内,不重合的两直线 y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系:
当 时,两直线平行。 当 时,两直线垂直。
当 时,两直线相交。 当 时,两直线交于y轴上同一点。
☆特殊直线方程:
X轴 : 直线 Y轴 : 直线
与X轴平行的直线 与Y轴平行的直线
一、 三象限角平分线 二、四象限角平分线
5、图中的图象(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,回答下列问题:
(1)汽车共行驶了___________ km;
(2)汽车在行驶途中停留了___________ h;
(3)汽车在整个行驶过程中的平均速度为___________ km/h;
(4)汽车自出发后3h至4.5h之间行驶的方向是___________.
举一反三:
【变式1】图中,射线l甲、l乙分别表示甲、乙两运动员在自行车比赛中所走的路程s与时间t的函数关系,求它们行进的速度关系。
【变式2】(2011四川内江)小高从家骑自行车去学校上学,先走上坡路到达点A,再走下坡路到达点B,最后走平路到达学校,所用的时间与路程的关系如图所示。放学后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,那么他从学校到家需要的时间是( )
A.14分钟 B.17分钟 C.18分钟 D.20分钟
【变式3】某种洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续的过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如图所示:
根据图象解答下列问题:
(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?
(2)已知洗衣机的排水速度为每分钟19升.
①求排水时y与x之间的关系式;
②如果排水时间为 2分钟,求排水结束时洗衣机中剩下的水量.
分析:依题意解读图象可知:从0—4分钟在进水,4—15分钟在清洗,此时,洗衣机内有水40升,15分钟后开始放水.
类型六:一次函数的性质
方法:⑴当时,一次函数的图象从左到右上升,随的增大而增大;
⑵当时,一次函数的图象从左到右下降,随的增大而减小
6、己知一次函数y=kx十b的图象交x轴于点A(一6,0),交y轴于点B,且△AOB的面积为12,y随x的增大而增大,求k,b的值.
思路点拨:设函数的图象与y轴交于点B(0,b),则OB=,由△AOB 的面积,可求出b,又由点A在直线上,可求出k并由函数的性质确定k的取值.
举一反三:
【变式1】已知关于x的一次函数.
(1)m为何值时,函数的图象经过原点?
(2)m为何值时,函数的图象经过点(0,-2)?
(3)m为何值时,函数的图象和直线y=-x平行?
(4)m为何值时,y随x的增大而减小?
【变式2】函数在直角坐标系中的图象可能是( ).
【变式3】一次函数 y=(6-3m)x+(2n-4)不经过第三象限,则m、n的范围是__________。
类型七:平移
方法:直线y=kx+b与y轴交点为(0,b),直线平移则直线上的点(0,b)也会同样的平移,平移不改变斜率k, b则将平移后的点代入解析式求出b即可。
直线y=kx+b向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。
7、过点(2,-3)且平行于直线y=2x的直线是____ _____。
举一反三:
【变式1】 过点(2,-3)且平行于直线y=-3x+1的直线是___________.
【变式2】直线m:y=2x+2是直线n向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n上,则a=____________;
【变式3】把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得到的图像表示的函数是____________。
类型八:交点问题及直线围成的面积问题
方法:两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解;
复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形);
往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;
8、已知直线m经过两点(1,6)、(-3,-2),它和x轴、y轴的交点式B、A,直线n过点(2,-2),且与y轴交点的纵坐标是-3,它和x轴、y轴的交点是D、C;
(1) 分别写出两条直线解析式,并画草图;
(2) 计算四边形ABCD的面积;
(3) 若直线AB与DC交于点E,求△BCE的面积。
举一反三:
【变式1】如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于点D,△AOP的面积为6;
(4) 求△COP的面积;
(5) 求点A的坐标及p的值;
(6) 若△BOP与△DOP的面积相等,求直线BD的函数解析式。
【变式2】已知:经过点(-3,-2),它与x轴,y轴分别交于点B、A,直线经过点(2,-2),且与y轴交于点C(0,-3),它与x轴交于点D
(1)求直线的解析式;
(2)若直线与交于点P,求的值。
【变式3】如图,已知点A(2,4),B(-2,2),C(4,0),求△ABC的面积。
类型九:一次函数综合
10、已知:如图,平面直角坐标系中,A( 1,0),B(0,1),C(-1,0),过点C的直线绕C旋转,交y轴于点D,交线段AB于点E。
(1)求∠OAB的度数及直线AB的解析式;
(2)若△OCD与△BDE的面积相等,①求直线CE的解析式;②若y轴上的一点P满足∠APE=45°,请直接写出点P的坐标。
思路点拨:(1)由A,B两点的坐标知,△AOB为等腰直角三角形,所以∠OAB=45°(2)△OCD与△BDE的面积相等,等价于△ACE与△AOB面积相等,故可求E点坐标,从而得到CE的解析式;因为E为AB中点,故P为(0,0)时,∠APE=45°.
举一反三:
【变式1】在长方形ABCD中,AB=3cm,BC=4cm,点P沿边按A→B→C→D的方向向点D运动(但不与A,D两点重合)。求△APD的面积y()与点P所行的路程x(cm)之间的函数关系式及自变量的取值范围。
【变式2】如图,直线与x轴y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0)。
(1)求的值;
(2)若点P(,)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围;
(3)探究:在(2)的条件下,当点P运动到什么位置时,△OPA的面积为,并说明理由。
【变式3】已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB
(1)求两个函数的解析式;
(2)求△AOB的面积。
一次函数练习
一、选择题
1.若是正比例函数,则b的值是( )
A.0 B. C. D.
2.当时,函数的函数值为 ( )
A.-25 B.-7 C. 8 D.11
3.函数y=(k-1)x,y随x增大而减小,则k的范围是 ( )
A. B. C. D.
4.一次函数不经过的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
5.若把一次函数y=2x-3,向上平移3个单位长度,得到图象解析式是( )
A、y=2x B、 y=2x-6 C、 y=5x-3 D、y=-x-3
6.一次函数的图象与直线y= -x+1平行,且过点(8,2),此一次函数的解析式为:( )
A、y=2x-14 B、y=-x-6 C、y=-x+10 D、y=4x
7.如果直线y=2x+m与两坐标轴围成的三角形面积等于m,则m的值是( )
A、±3 B、3 C、±4 D、4
8.点A(,)和B(,)在同一直线上,且.若,则,的关系是( )A、 B、 C、 D、无法确定.
9.若m<0, n>0, 则一次函数y=mx+n的图象不经过 ( )
A.第一象限 B. 第二象限 C.第三象限 D.第四象限
2
x
y
0
2
10、一次函数(是常数,)的图象如图所示,则不等式
的解集是( )
A. B. C. D.
11.已知函数,当-1<x≤1时,y 的取值范围是( )
A. B. C. D.
12.已知两个一次函数y=x+3k和y=2x-6的图象交点在y轴上,则k的值为( )
A、3 B、1 C、2 D、-2
13.已知一次函数y=kx-k,若y随x的增大而减小,则该函数的图象经过( )
A、第一、二、三象限 B、第一、二、四象限
C、第二、三、四象限 D、第一、三、四象限
14.当时,函数y=ax+b与在同一坐标系中的图象大致是( )
15.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是( )
A.0个 B.1个 C.2个 D.3个
16.汽车由A地驶往相距120km的B地,它的平均速度是30km/h,则汽车距B地路程s(km)与行驶时间t(h)的函数关系式及自变量t的取值范围是( )
A.S=120-30t (0≤t≤4) B.S=120-30t (t>0)
C.S=30t (0≤t≤40) D.S=30t (t<4)
二、填空题
1.若关于x的函数是一次函数,则m= ,n .
2.在函数中,自变量的取值范围是 。
3.把函数的图像向 平移 个单位得到函数。
4.直线y=2x+b经过点(1,3),则b= _________
5. 已知一次函数y=-3x+2,它的图像不经过第 象限.
6.若一次函数y=mx-(m-2)过点(0,3),则m= .
7.函数y= -x+2的图象与x轴,y轴围成的三角形面积为_________________.
8.已知函数y=-3x+b的图象过点(1,-2)和(a,-4),则a=__________
9.某一次函数图象过点(-1,5),且函数y的值随自变量x的值的增大而增大,请你写出一个符合上述条件的函数关系式___________
10.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组的解是________.
11.若直线y=kx+b平行直线y=5x+3,且过点(2,-1),则k=______ ,b=______ .
12.直线y=2x+3与y=3x-2b的图象交x轴上同一点,则b=_______.
13.写出一个图象经过点(-1,-1),且不经过第一象限的函数关系式____________.
14.一次函数y=kx+b的图象与正比例函数的图象平行,且与直线y=-2x-1交于y轴上同一点,则这个一次函数的关系式为____________.
0
3
4
0.7
1
y(元)
x(分)
15.在某公用电话亭打电话时,需付电话费y(元)与通话时间 x(分钟)之间的函数关系用图象表示如图.小明打了2分钟需付费______元;小莉打了8分钟需付费_______元.
三、计算题
1.画出函数y=-2x+5的图象,结合图象回答下列问题:
(1)这个函数中,随着x的增大,它的图象从左到右是怎样变化的?
(2)当x取何值时,y=0?
(3)当x取何值时,函数的图象在x轴的下方?
2.已知一次函数y=(4m+1)x-(m+1),
(1)m为何值时,y随x的增大而减小?
(2)m为何值时,直线与y轴的交点在x轴的下方?
(3)m为何值时,直线位于第二,三,四象限?
3.已知关于x的一次函数y=(3a-7)x+a-2的图象与y轴的交点在x轴的上方,
且当x1<x2时,对应的函数值满足y1>y2,求a的取值范围.
4.已知直线.
(1) 求已知直线与y轴的交点A的坐标;
(2) 若直线与已知直线关于y轴对称,求k与b的值.
5.已知直线y=-x+3与y=2x-1,求它们与y轴所围成的三角形的面积.
6.如图,已知直线L1:y1=k1x+b1和L2:y2=k2x+b2相交于点M(1,3),根据图象判断:
(1)x取何值时,y1=y2?(2)x取何值时,y1>y2?(3)x取何值时,y1<y2?
7.已知与成正比例,且时,.
(1)求与的函数关系式;
(2)当时,求的值;
(3)将所得函数图象平移,使它过点(2,-1).求平移后直线的解析式.
8. 如图,直线y=2x+3与x轴交于点A,与y轴交于点B。
(1) 求A、B两点的坐标;
(2) 过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的
面积。
9.已知,直线y=2x+3与直线y=-2x-1.
(1) 求两直线与y轴交点A,B的坐标;
x
y
A
B
C
(2) 求两直线交点C的坐标;
(3) 求△ABC的面积.
10.小强骑自行车去郊游,右图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象,小明9点离开家,15点回家,根据这个图象,请你回答下列问题:①小强到离家最远的地方需几小时?此时离家多远?②何时开始第一次休息?休息时间多长?③小强何时距家21㎞?(写出计算过程)
11.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).
(1)小强让爷爷先上多少米?
(2)山顶离山脚的距离有多少米?谁先爬上山顶?
(3)小强经过多少时间追上爷爷?
12.某水果店超市,营销员的个人收入与他每月的销售量成一次函数关系,其图象如下:请你根据图象提供的信息,解答以下问题:
(1)求营销员的个人收入y元与营销员每月销售量x千克(x≥0)之间的函数关系式;
(2)营销员佳妮想得到收入1400元,她应销售多少水果?
1000
2000
4000
3000
400
800
1200
y(元)
x(千克)
展开阅读全文