资源描述
高中数学必修2知识点总结
立体几何初步
特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
柱体、锥体、台体的体积公式
(4)球体的表面积和体积公式:V= ; S=
第二章 直线与平面的位置关系
2.1空间点、直线、平面之间的位置关系
1 平面含义:平面是无限延展的
2 三个公理:
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
符号表示为
L
A
·
α
A∈L
B∈L => L α
A∈α
B∈α
公理1作用:判断直线是否在平面内.
C
·
B
·
A
·
α
(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C三点不共线 => 有且只有一个平面α,
使A∈α、B∈α、C∈α。
公理2作用:确定一个平面的依据。
P
·
α
L
β
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β =>α∩β=L,且P∈L
公理3作用:判定两个平面是否相交的依据.
2.1.2 空间中直线与直线之间的位置关系
1 空间的两条直线有如下三种关系:
共面直线
相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点。
2 公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线
=>a∥c
a∥b
c∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3 等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
4 注意点:
① a'与b'所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;
② 两条异面直线所成的角θ∈(0, );
③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
2.1.3 — 2.1.4 空间中直线与平面、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
(1)直线在平面内 —— 有无数个公共点
(2)直线与平面相交 —— 有且只有一个公共点
(3)直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
a α a∩α=A a∥α
2.2.直线、平面平行的判定及其性质
2.2.1 直线与平面平行的判定
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:
a α
b β => a∥α
a∥b
2.2.2 平面与平面平行的判定
1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:
a β
b β
a∩b = P β∥α
a∥α
b∥α
2、判断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
2.2.3 — 2.2.4直线与平面、平面与平面平行的性质
1、直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:
a ∥α
a β a∥b
α∩β= b
作用:利用该定理可解决直线间的平行问题。
2、两个平面平行的性质定理:如果两个平行的平面同时与第三个平面相交,那么它们的交线平行。
符号表示:
α∥β
α∩γ= a a∥b
β∩γ= b
作用:可以由平面与平面平行得出直线与直线平行
2.3直线、平面垂直的判定及其性质
2.3.1直线与平面垂直的判定
1、定义:如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。如图,直线与平面垂直时,它们唯一公共点P叫做垂足。
P
a
L
2、直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
注意点: a)定理中的“两条相交直线”这一条件不可忽视;
b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。
2.3.2平面与平面垂直的判定
1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形
A
梭 l β
B
α
2、 二面角的记法:二面角α-l-β或α-AB-β
3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
2.3.3 — 2.3.4直线与平面、平面与平面垂直的性质
1、直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行。
2、两个平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
第三章 直线与方程
(1)直线的倾斜角
定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。
当直线l与x轴平行或重合时, α=0°, k = tan0°=0;
当直线l与x轴垂直时, α= 90°, k 不存在.
当时,; 当时,; 当时,不存在。
②过两点的直线的斜率公式: ( P1(x1,y1),P2(x2,y2),x1≠x2)
注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;
(2)k与P1、P2的顺序无关;
(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;
(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。
(3)直线方程
①点斜式:直线斜率k,且过点
注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。
当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。
②斜截式:,直线斜率为k,直线在y轴上的截距为b
③两点式:()直线两点,
④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。
⑤一般式:(A,B不全为0)
注意:各式的适用范围 特殊的方程如:
平行于x轴的直线:(b为常数); 平行于y轴的直线:(a为常数);
(6)两直线平行与垂直
当,时,
;
注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。
(7)两条直线的交点
相交
交点坐标即方程组的一组解。
方程组无解 ; 方程组有无数解与重合
(8)两点间距离公式:设是平面直角坐标系中的两个点,
则
(9)点到直线距离公式:一点到直线的距离
(10)两平行直线距离公式
已知两条平行线直线和的一般式方程为:,
:,则与的距离为
第四章 圆与方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(1)标准方程,圆心,半径为r;
点与圆的位置关系:
当>,点在圆外 当=,点在圆上
当<,点在圆内
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;
当时,方程不表示任何图形。
(3)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为 ,则有;;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含; 当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
圆的辅助线一般为连圆心与切线或者连圆心与弦中点
第一章 空间几何体题
一、选择题
1.有一个几何体的三视图如下图所示,这个几何体可能是一个( ).
主视图 左视图 俯视图
(第1题)
A.棱台 B.棱锥 C.棱柱 D.正八面体
2.如果一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底均为的等腰梯形,那么原平面图形的面积是( ).
A.2+ B. C. D.
3.棱长都是的三棱锥的表面积为( ).
A. B.2 C.3 D.4
4.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是( ).
A.25π B.50π C.125π D.都不对
5.正方体的棱长和外接球的半径之比为( ).
A.∶1 B.∶2 C.2∶ D.∶3
6.在△ABC中,AB=2,BC=1.5,∠ABC=120°,若使△ABC绕直线旋转一周,则所形成的几何体的体积是( ).
A.π B.π C.π D.π
7.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).
A.130 B.140 C.150 D.160
8.如图,在多面体ABCDEF中,已知平面ABCD是边长为3的正方形,EF∥AB,EF=,且EF与平面ABCD的距离为2,则该多面体的体积为( ).
(第8题)
A. B.5 C.6 D.
9.下列关于用斜二测画法画直观图的说法中,错误的是( ).
A.用斜二测画法画出的直观图是在平行投影下画出的空间图形
B.几何体的直观图的长、宽、高与其几何体的长、宽、高的比例相同
C.水平放置的矩形的直观图是平行四边形
D.水平放置的圆的直观图是椭圆
10.如图是一个物体的三视图,则此物体的直观图是( ).
(第10题)
二、填空题
11.一个棱柱至少有______个面,面数最少的一个棱锥有________个顶点,顶点最少的一个棱台有________条侧棱.
12.若三个球的表面积之比是1∶2∶3,则它们的体积之比是_____________.
13.正方体ABCD-A1B1C1D1 中,O是上底面ABCD的中心,若正方体的棱长为a,则三棱锥O-AB1D1的体积为_____________.
14.如图,E,F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是___________.
(第14题)
15.已知一个长方体共一顶点的三个面的面积分别是、、,则这个长方体的对角线长是___________,它的体积为___________.
16.一个直径为32厘米的圆柱形水桶中放入一个铁球,球全部没入水中后,水面升高9厘米则此球的半径为_________厘米.
三、解答题
17.有一个正四棱台形状的油槽,可以装油190 L,假如它的两底面边长分别等于60 cm和40 cm,求它的深度.
18 *.已知半球内有一个内接正方体,求这个半球的体积与正方体的体积之比.[提示:过正方体的对角面作截面]
19.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.
(第19题)
20.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些?
第二章 点、直线、平面之间的位置关系A组
一、选择题
1.设 a,b为两个不同的平面,l,m为两条不同的直线,且la,m,有如下的两个命题:①若 a∥b,则l∥m;②若l⊥m,则 a⊥b.那么( ).
A.①是真命题,②是假命题 B.①是假命题,②是真命题 C.①②都是真命题 D.①②都是假命题
2.如图,ABCD-A1B1C1D1为正方体,下面结论错误的是( ).
(第2题)
A.BD∥平面CB1D1
B.AC1⊥BD
C.AC1⊥平面CB1D1
D.异面直线AD与CB1角为60°
3.关于直线m,n与平面 a,b,有下列四个命题:
①m∥a,n∥b 且 a∥b,则m∥n; ②m⊥a,n⊥b 且 a⊥b,则m⊥n;
③m⊥a,n∥b 且 a∥b,则m⊥n; ④m∥a,n⊥b 且 a⊥b,则m∥n.
其中真命题的序号是( ). A.①② B.③④ C.①④ D.②③
4.给出下列四个命题:
①垂直于同一直线的两条直线互相平行 ②垂直于同一平面的两个平面互相平行
③若直线l1,l2与同一平面所成的角相等,则l1,l2互相平行
④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线
其中假命题的个数是( ).A.1 B.2 C.3 D.4
5.下列命题中正确的个数是( ).
①若直线l上有无数个点不在平面 a 内,则l∥a
②若直线l与平面 a 平行,则l与平面 a 内的任意一条直线都平行
③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行
④若直线l与平面 a 平行,则l与平面 a 内的任意一条直线都没有公共点
A.0个 B.1个 C.2个 D.3个
6. 两直线l1与l2异面,过l1作平面与l2平行,这样的平面( ).
A.不存在 B.有唯一的一个 C.有无数个 D.只有两个
7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为( ).
A.90° B.60° C.45° D.30°
8.下列说法中不正确的是( ).
A.空间中,一组对边平行且相等的四边形一定是平行四边形
B.同一平面的两条垂线一定共面
C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内
D.过一条直线有且只有一个平面与已知平面垂直
9.给出以下四个命题:
①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行
②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面
③如果两条直线都平行于一个平面,那么这两条直线互相平行
④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直
其中真命题的个数是( ). A.4 B.3 C.2 D.1
10.异面直线a,b所成的角60°,直线a⊥c,则直线b与c所成的角的范围为( ).
A.[30°,90°] B.[60°,90°] C.[30°,60°] D.[30°,120°]
二、填空题
11.已知三棱锥P-ABC的三条侧棱PA,PB,PC两两相互垂直,且三个侧面的面积分别为S1,S2,S3,则这个三棱锥的体积为 .
12.P是△ABC 所在平面 a 外一点,过P作PO⊥平面 a,垂足是O,连PA,PB,PC.
(1)若PA=PB=PC,则O为△ABC 的 心;
(2)PA⊥PB,PA⊥PC,PC⊥PB,则O是△ABC 的 心;
(3)若点P到三边AB,BC,CA的距离相等,则O是△ABC 的 心;
(4)若PA=PB=PC,∠C=90º,则O是AB边的 点;
J
(第13题)
(5)若PA=PB=PC,AB=AC,则点O在△ABC的 线上.
13.如图,在正三角形ABC中,D,E,F分别为各边的中点,G,H,I,J分别为AF,AD,BE,DE的中点,将△ABC沿DE,EF,DF折成三棱锥以后,GH与IJ所成角的度数为 .
14.直线l与平面 a 所成角为30°,l∩a=A,直线m∈a,则m与l所成角的取值范围是 .
15.棱长为1的正四面体内有一点P,由点P向各面引垂线,垂线段长度分别为d1,d2,d3,d4,则d1+d2+d3+d4的值为 .
16.直二面角 a-l-b 的棱上有一点A,在平面 a,b 内各有一条射线AB,AC与l成45°,ABa,ACb,则∠BAC= .
三、解答题
17.在四面体ABCD中,△ABC与△DBC都是边长为4的正三角形.
(1)求证:BC⊥AD;
(第17题)
(2)若点D到平面ABC的距离等于3,求二面角A-BC-D的正弦值;
(3)设二面角A-BC-D的大小为 q,猜想 q 为何值时,四面体A-BCD的体积最大.(不要求证明)
18. 如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.
(1)求证:平面EDB⊥平面EBC;
(2)求二面角E-DB-C的正切值.
(第18题)
19*.如图,在底面是直角梯形的四棱锥S-ABCD中,AD∥BC,∠ABC=90°,
SA⊥面ABCD,SA=AB=BC=1,AD=.
(1)求四棱锥S—ABCD的体积;
(2)求面SCD与面SBA所成的二面角的正切值.
(提示:延长 BA,CD 相交于点 E,则直线 SE 是
所求二面角的棱.)
20*.斜三棱柱的一个侧面的面积为10,这个侧面与它所对棱的距离等于6,求这个棱柱的体积.(提示:在 AA1 上取一点 P,过 P 作棱柱的截面,使 AA1 垂直于这个截面.)
(第20题)
第三章 直线与方程 A组
一、选择题
1.若直线x=1的倾斜角为 a,则 a( ).
A.等于0 B.等于p C.等于 D.不存在
2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则( ).
A.k1<k2<k3 B.k3<k1<k2
C.k3<k2<k1 D.k1<k3<k2
(第2题)
3.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=( ).
A.2 B.-2 C.4 D.1
4.已知直线l与过点M(-,),N(,-)的直线垂直,则直线l的倾斜角是( ).
A. B. C. D.
5.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过( ).
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是( ).
A.x+y-5=0 B.2x-y-1=0 C.2y-x-4=0 D.2x+y-7=0
7.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为( ).
A.19x-9y=0 B.9x+19y=0 C.19x-3y= 0 D.3x+19y=0
8.直线l1:x+a2y+6=0和直线l2 : (a-2)x+3ay+2a=0没有公共点,则a的值是( ).
A.3 B.-3 C.1 D.-1
9.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l' 与l重合,则直线l' 的斜率为( ).
A. B. C. D.
10.点(4,0)关于直线5x+4y+21=0的对称点是( ).
A.(-6,8) B.(-8,-6) C.(6,8) D.(-6,-8)
二、填空题
11.已知直线l1的倾斜角 a1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为 .
12.若三点A(-2,3),B(3,-2),C(,m)共线,则m的值为 .
13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为 .
14.求直线3x+ay=1的斜率 .
15.已知点A(-2,1),B(1,-2),直线y=2上一点P,使|AP|=|BP|,则P点坐标为 .
16.与直线2x+3y+5=0平行,且在两坐标轴上截距的和为6的直线方程是 .
17.若一束光线沿着直线x-2y+5=0射到x轴上一点,经x轴反射后其反射线所在直线的方程是 .
三、解答题
18.设直线l的方程为(m2-2m-3)x+(2m2+m-1)y=2m-6(m∈R,m≠-1),根据下列条件分别求m的值:
①l在x轴上的截距是-3; ②斜率为1.
19.已知△ABC的三顶点是A(-1,-1),B(3,1),C(1,6).直线l平行于AB,交AC,BC分别于E,F,△CEF的面积是△CAB面积的.求直线l的方程.
20.一直线被两直线l1:4x+y+6=0,l2:3x-5y-6=0截得的线段的中点恰好是坐标原点,求该直线方程.
.
21.直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程.
第四章 圆与方程
一、选择题
1.若圆C的圆心坐标为(2,-3),且圆C经过点M(5,-7),则圆C的半径为( ).
A. B.5 C.25 D.
2.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是( ).
A.(x-3)2+(y+1)2=4 B.(x+3)2+(y-1)2=4 C.(x-1)2+(y-1)2=4 D.(x+1)2+(y+1)2=4
3.以点(-3,4)为圆心,且与x轴相切的圆的方程是( ).
A.(x-3)2+(y+4)2=16 B.(x+3)2+(y-4)2=16 C.(x-3)2+(y+4)2=9 D.(x+3)2+(y-4)2=19
4.若直线x+y+m=0与圆x2+y2=m相切,则m为( ).
A.0或2 B.2 C. D.无解
5.圆(x-1)2+(y+2)2=20在x轴上截得的弦长是( ).
A.8 B.6 C.6 D.4
6.两个圆C1:x2+y2+2x+2y-2=0与C2:x2+y2-4x-2y+1=0的位置关系为( ).
A.内切 B.相交 C.外切 D.相离
7.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为A,B,则线段AB的垂直平分线的方程是( ).
A.x+y-1=0 B.2x-y+1=0 C.x-2y+1=0 D.x-y+1=0
8.圆x2+y2-2x=0和圆x2+y2+4y=0的公切线有且仅有( ).
A.4条 B.3条 C.2条 D.1条
9.在空间直角坐标系中,已知点M(a,b,c),有下列叙述:
点M关于x轴对称点的坐标是M1(a,-b,c); 点M关于yoz平面对称的点的坐标是M2(a,-b,-c);
点M关于y轴对称的点的坐标是M3(a,-b,c); 点M关于原点对称的点的坐标是M4(-a,-b,-c).
其中正确的叙述的个数是( ).
A.3 B.2 C.1 D.0
10.空间直角坐标系中,点A(-3,4,0)与点B(2,-1,6)的距离是( ).
A.2 B.2 C.9 D.
二、填空题
11.圆x2+y2-2x-2y+1=0上的动点Q到直线3x+4y+8=0距离的最小值为 .
12.圆心在直线y=x上且与x轴相切于点(1,0)的圆的方程为 .
13.以点C(-2,3)为圆心且与y轴相切的圆的方程是 .
14.两圆x2+y2=1和(x+4)2+(y-a)2=25相切,试确定常数a的值 .
15.圆心为C(3,-5),并且与直线x-7y+2=0相切的圆的方程为 .
16.设圆x2+y2-4x-5=0的弦AB的中点为P(3,1),则直线AB的方程是 .
三、解答题
17.求圆心在原点,且圆周被直线3x+4y+15=0分成1∶2两部分的圆的方程.
18.求过原点,在x轴,y轴上截距分别为a,b的圆的方程(ab≠0).
19.求经过A(4,2),B(-1,3)两点,且在两坐标轴上的四个截距之和是2的圆的方程.
20.求经过点(8,3),并且和直线x=6与x=10都相切的圆的方程.
期末测试题
考试时间:90分钟 试卷满分:100分
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.
1.在直角坐标系中,已知A(-1,2),B(3,0),那么线段AB中点的坐标为( ).
A.(2,2) B.(1,1) C.(-2,-2) D.(-1,-1)
正视图
侧视图
俯视图
(第2题)
2.右面三视图所表示的几何体是( ).
A.三棱锥
B.四棱锥
C.五棱锥
D.六棱锥
3.如果直线x+2y-1=0和y=kx互相平行,则实数k的值为( ).
A.2 B. C.-2 D.-
4.一个球的体积和表面积在数值上相等,则该球半径的数值为( ).
A.1 B.2 C.3 D.4
5.下面图形中是正方体展开图的是( ).
A B C D
(第5题)
6.圆x2+y2-2x-4y-4=0的圆心坐标是( ).
A.(-2,4) B.(2,-4) C.(-1,2) D.(1,2)
7.直线y=2x+1关于y轴对称的直线方程为( ).
A.y=-2x+1 B.y=2x-1 C.y=-2x-1 D.y=-x-1
8.已知两条相交直线a,b,a∥平面 a,则b与 a 的位置关系是( ).
A.b平面a B.b⊥平面a C.b∥平面a D.b与平面a相交,或b∥平面a
9.在空间中,a,b是不重合的直线,a,b是不重合的平面,则下列条件中可推出a∥b的是( ).
A.aa,bb,a∥b B.a∥a,bb C.a⊥a,b⊥a D.a⊥a,ba
10. 圆x2+y2=1和圆x2+y2-6y+5=0的位置关系是( ).
A.外切 B.内切 C.外离 D.内含
(第11题)
11.如图,正方体ABCD—A'B'C'D'中,直线D'A与DB所成的角可以表示为( ).
A.∠D'DB B.∠AD' C'
C.∠ADB D.∠DBC'
12. 圆(x-1)2+(y-1)2=2被轴截得的弦长等于( ).
A. 1 B. C. 2 D. 3
A1
B1
C1
A
B
E
C
(第13题)
13.如图,三棱柱A1B1C1—ABC中,侧棱AA1⊥底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( ).
A.CC1与B1E是异面直线
B.AC⊥平面A1B1BA
C.AE,B1C1为异面直线,且AE⊥B1C1
D.A1C1∥平面AB1E
14.有一种圆柱体形状的笔筒,底面半径为4 cm,高为12 cm.现要为100个这种相同规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计). 如果每0.5 kg涂料可以涂1 m2,那么为这批笔筒涂色约需涂料.
A.1.23 kg B.1.76 kg C.2.46 kg D.3.52 kg
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.
15.坐标原点到直线4x+3y-12=0的距离为 .
A
B
C
D
D1
C1
B1
A1
(第17题)
16.以点A(2,0)为圆心,且经过点B(-1,1)的圆的方程是 .
17.如图,在长方体ABCD—A1B1C1D1中,棱锥A1——ABCD的体积与长方体的体积之比为_______________.
18.在平面几何中,有如下结论:三边相等的三角形内任意一点到三边的距离之和为定值.拓展到空间,类比平面几何的上述结论,可得:四个面均为等边三角形的四面体内任意一点_______________________________________.
三、解答题:本大题共3小题,共28分.解答应写出文字说明,证明过程或演算步骤.
19.已知直线l经过点(0,-2),其倾斜角是60°.
(1)求直线l的方程;
(2)求直线l与两坐标轴围成三角形的面积.
A
C
P
B
D
E
(第20题)
20.如图,在三棱锥P—ABC中,PC⊥底面ABC,
AB⊥BC,D,E分别是AB,PB的中点.
(1)求证:DE∥平面PAC;
(2)求证:AB⊥PB;
(3)若PC=BC,求二面角P—AB—C的大小.
21.已知半径为5的圆C的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(1)求圆C的方程;
(2)设直线ax-y+5=0与圆C相交于A,B两点,求实数a的取值范围;
(3) 在(2)的条件下,是否存在实数a,使得过点P(-2,4)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
期末测试题
参考答案
一、选择题
1.B 2.D 3.D 4.C 5.A 6.D 7.A 8.D 9.C
10.A 11.D 12.C 13.C 14.D
二、填空题
15..
16.(x-2)2+y2=10.
17.1:3.
18.到四个面的距离之和为定值.
三、解答题
19.解:(1)因为直线l的倾斜角的大小为60°,故其斜率为tan 60°=,又直线l经过点(0,-2),所以其方程为x-y-2=0.
(2)由直线l的方程知它在x轴、y轴上的截距分别是,-2,所以直线l与两坐标轴围成三角形的面积S=··2=.
A
C
P
B
D
E
(第20题)
20.(1)证明:因为D,E分别是AB,PB的中点,
所以DE∥PA.
因为PA平面PAC,且DE平面PAC,
所以DE∥平面PAC.
(2)因为PC⊥平面ABC,且AB平面ABC,
所以AB⊥PC.又因为AB⊥BC,且PC∩BC=C.
所以AB⊥平面PBC.
又因为PB平面PBC,
所以AB⊥PB.
(3)由(2)知,PB⊥AB,BC⊥AB,
所以,∠PBC为二面角P—AB—C的平面角.
因为PC=BC,∠PCB=90°,
所以∠PBC=45°,
所以二面角P—AB—C的大小为45°.
21.解:(1)设圆心为M(m,0)(m∈Z).
由于圆与直线4x+3y-29=0相切,且半径为5,所以,=5,
即|4m-29|=25.
因为m为整数,故m=1.
故所求的圆的方程是(x-1)2+y2=25.
(2)直线ax-y+5=0即y=ax+5.代入圆的方程,消去y整理,得
(a2+1)x2+2(5a-1)x+1=0.
由于直线ax-y+5=0交圆于A,B两点,故△=4(5a-1)2-4(a2+1)
展开阅读全文