收藏 分销(赏)

高二数学函数的最值与导数测试题-(有答案).doc

上传人:a199****6536 文档编号:4043003 上传时间:2024-07-26 格式:DOC 页数:6 大小:136.50KB
下载 相关 举报
高二数学函数的最值与导数测试题-(有答案).doc_第1页
第1页 / 共6页
高二数学函数的最值与导数测试题-(有答案).doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
函数的最值与导数 一、选择题 1.函数y=f(x)在区间[a,b]上的最大值是M,最小值是m,若M=m,则f′(x)(  ) A.等于0        B.大于0 C.小于0 D.以上都有可能 [答案] A [解析] ∵M=m,∴y=f(x)是常数函数∴f′(x)=0,故应选A. 2.函数f(x)=2x3-6x2-18x+7(  ). A.在x=-1处取得极大值17,在x=3处取得极小值-47 B.在x=-1处取得极小值17,在x=3处取得极大值-47 C.在x=-1处取得极小值-17,在x=3处取得极大值47 D.以上都不对 解析 f′(x)=6x2-12x-18,令f′(x)=0,解得x1=-1,x2=3.当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,-1) -1 (-1,3) 3 (3,+∞) f′(x) + 0 - 0 + f(x)  极大值  极小值  ∴当x=-1时,f(x)取得极大值,f(-1)=17;当x=3时,f(x)取得极小值,f(3)=-47. 答案 A 3.设函数f(x)=xex,则(  ) A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点 C.x=-1为f(x)的极大值点 D.x=-1为f(x)的极小值点 解析:选D 求导得f′(x)=ex+xex=ex(x+1),令f′(x)=ex(x+1)=0,解得x=-1,易知x=-1是函数f(x)的极小值点. 4.函数y=x3+x2-x+1在区间[-2,1]上的最小值为(  ) A. B.2 C.-1 D.-4 [答案] C [解析] y′=3x2+2x-1=(3x-1)(x+1) 令y′=0解得x=或x=-1 当x=-2时,y=-1;当x=-1时,y=2; 当x=时,y=;当x=1时,y=2. 所以函数的最小值为-1,故应选C. 5.函数y=+在(0,1)上的最大值为(  ) A. B.1 C.0 D.不存在 [答案] A [解析] y′=-=· 由y′=0得x=,在上y′>0,在上 y′<0.∴x=时y极大=, 又x∈(0,1),∴ymax=. 6.函数y=2x3-3x2-12x+5在[0,3]上的最大值和最小值分别是(  ) A.5,-15 B.5,4 C.-4,-15 D.5,-16 [答案] A [解析] y′=6x2-6x-12=6(x-2)(x+1), 令y′=0,得x=2或x=-1(舍). ∵f(0)=5,f(2)=-15,f(3)=-4, ∴ymax=5,ymin=-15,故选A. 7.已知函数y=-x2-2x+3在[a,2]上的最大值为,则a等于(  ) A.- B. C.- D.或- [答案] C [解析] y′=-2x-2,令y′=0得x=-1. 当a≤-1时,最大值为f(-1)=4,不合题意. 当-1<a<2时,f(x)在[a,2]上单调递减, 最大值为f(a)=-a2-2a+3=, 解得a=-或a=-(舍去). 8.函数f(x)=x3+ax-2在区间[1,+∞)上是增函数,则实数a的取值范围是(  ) A.[3,+∞) B.[-3,+∞) C.(-3,+∞) D.(-∞,-3) [答案] B [解析] ∵f(x)=x3+ax-2在[1,+∞)上是增函数,∴f′(x)=3x2+a≥0在[1,+∞)上恒成立 即a≥-3x2在[1,+∞)上恒成立 又∵在[1,+∞)上(-3x2)max=-3 ∴a≥-3,故应选B. 二、填空题 9.(2011·江南十校)当函数y=x·2x取极小值时,x=______ 答案 - 解析 由y=x·2x得y′=2x+x·2x·ln2 令y′=0得2x(1+x·ln2)=0 ∵2x>0,∴x=- 10.(2014·营口三中期中)若a>0,b>0,且函数f(x)=4x3-ax2-2bx在x=1处有极值,则a+b等于______ A.2    B.3    C.    D.9 [答案] 6 [解析] f ′(x)=12x2-2ax-2b,由条件知x=1是方程f ′(x)=0的实数根,∴a+b=6. 11.若函数f(x)=(a>0)在[1,+∞)上的最大值为,则a的值为________. [答案] -1 [解析] f′(x)== 令f′(x)=0,解得x=或x=-(舍去) 当x>时,f′(x)<0;当0<x<时,f′(x)>0; 当x=时,f(x)==,=<1,不合题意. ∴f(x)max=f(1)==,解得a=-1. 12.f(x)=x3-12x+8在[-3,3]上的最大值为M,最小值为m,则M-m=________. [答案] 32 [解析] f′(x)=3x2-12 由f′(x)>0得x>2或x<-2, 由f′(x)<0得-2<x<2. ∴f(x)在[-3,-2]上单调递增,在[-2,2]上单调递减,在[2,3]上单调递增. 又f(-3)=17,f(-2)=24,f(2)=-8, f(3)=-1, ∴最大值M=24,最小值m=-8, ∴M-m=32. 三、解答题 13.已知函数的图象过点,且在点处的切线斜率为8. (Ⅰ)求的值; (Ⅱ)求函数的单调区间; (Ⅰ)解:∵函数的图象过点, ∴. ∴. ① 又函数图象在点处的切线斜率为8, ∴ , 又, ∴. ② 解由①②组成的方程组,可得. (Ⅱ)由(Ⅰ)得, 令,可得; 令,可得. ∴函数的单调增区间为,减区间为.[来源:学 14.(2010·安徽理,17)设a为实数,函数f(x)=ex-2x+2a,x∈R. (1)求f(x)的单调区间及极值; (2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1. [分析] 本题考查导数的运算,利用导数研究函数的单调区间,求函数的极值和证明函数不等式,考查运算能力、综合分析和解决问题的能力. 解题思路是:(1)利用导数的符号判定函数的单调性,进而求出函数的极值.(2)将不等式转化构造函数,再利用函数的单调性证明. [解析] (1)解:由f(x)=ex-2x+2a,x∈R知f′(x)=ex-2,x∈R. 令f′(x)=0,得x=ln2.于是当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,ln2) ln2 (ln2,+∞) f′(x) - 0 + f(x) 单调递减 2(1-ln2+a) 单调递增 故f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞), f(x)在x=ln2处取得极小值,极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a). (2)证明:设g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R. 由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0. 于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增. 于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0). 而g(0)=0,从而对任意x∈(0,+∞),g(x)>0. 即ex-x2+2ax-1>0,故ex>x2-2ax+1. 15.已知函数f(x)=,x∈[0,1]. (1)求f(x)的单调区间和值域; (2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1].若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围. [解析] (1)对函数f(x)求导,得 f′(x)==- 令f′(x)=0解得x=或x=. 当x变化时,f′(x),f(x)的变化情况如下表: x 0 (0,) (,1) 1 f′(x) - 0 + f(x) -  -4  -3 所以,当x∈(0,)时,f(x)是减函数; 当x∈时,f(x)是增函数. 当x∈[0,1]时,f(x)的值域为[-4,-3]. (2)g′(x)=3(x2-a2). 因为a≥1,当x∈(0,1)时,g′(x)<0. 因此当x∈(0,1)时,g(x)为减函数,从而当x∈[0,1]时有g(x)∈[g(1),g(0)]. 又g(1)=1-2a-3a2,g(0)=-2a,即x∈[0,1]时有g(x)∈[1-2a-3a2,-2a]. 任给x1∈[0,1],f(x1)∈[-4,-3],存在x0∈[0,1]使得g(x0)=f(x1)成立, 则[1-2a-3a2,-2a]⊇[-4,-3]. 即 解①式得a≥1或a≤-;解②式得a≤. 又a≥1,故a的取值范围为1≤a≤.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服