收藏 分销(赏)

江苏省2020—2021学年高一数学必修四随堂练习及答案:04两角和与差的正弦(2).docx

上传人:天**** 文档编号:3825292 上传时间:2024-07-22 格式:DOCX 页数:3 大小:167.12KB
下载 相关 举报
江苏省2020—2021学年高一数学必修四随堂练习及答案:04两角和与差的正弦(2).docx_第1页
第1页 / 共3页
江苏省2020—2021学年高一数学必修四随堂练习及答案:04两角和与差的正弦(2).docx_第2页
第2页 / 共3页
江苏省2020—2021学年高一数学必修四随堂练习及答案:04两角和与差的正弦(2).docx_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、随堂练习:两角和与差的正弦(2)12022昆明模拟若cos,是第三象限的角,则sin() 2 3都是锐角,且, 4已知,且,则的是 5 6将函数的图象向左平移个单位(),是所得函数的图象的一个对称中心,则的最小值为 7已知函数,则函数的振幅为 8已知(0,),cos=,则sin()=_9(本小题满分13分)已知函数.(1)求的值;(2)求的单调递增区间.参考答案1【解析】由题意知,cos,是第三象限的角,所以sin,由两角和的正弦公式可得,sin()sincoscossin()()21【解析】试题分析:依据两角和的公式,考点:两角和的正弦公式3【解析】试题分析:由都是锐角,利用同角三角函数间的

2、基本关系分别求出和的值,然后把所求式子的角变为,利用两角和与差的正弦函数公式化简,把各自的值代入即可求出值试题解析:都是锐角,且,考点:1、同角三角函数间的基本关系;2、两角和与差的余弦函数4【解析】试题分析:由得,即,可得,由于,故,所以,考点:三角恒等变换5【解析】试题分析:考点:1.两角和的正弦公式;2.特殊角函数值.6【解析】试题分析:,向左平移个单位得到,所以,的最小值为,故选.考点:1.两角和与差的正弦公式;2.函数图像的对称中心.7【解析】试题分析: =+=所以振幅为考点:本小题考查两角和与差的正弦公式以及帮助角公式,和的性质.点评:高考中对两角和与差的正弦、余弦、正切公式及二倍

3、角公式的考查往往渗透在争辩三角函数性质中,需要利用这些公式,先把解析式化为的形式,再进一步争辩其定义域、值域和最值、单调性、奇偶性、周期性、对称性等性质.8【解析】解:由于(0,),cos=,所以说为钝角,则sin=3/5,则sin()=sincos-cossin=9(1)0;(2)【解析】试题分析:(1)将代入解析式直接计算.(2)先用两角和差公式将开放,再用化一公式将其化简,将化简为的形式.将整体角代入正弦的单调增区间计算可得的单调增区间.试题解析:解:(1). 3分(2) 5分. 9分函数的单调递增区间为,由, 11分得.所以 的单调递增区间为. 13分考点:1三角函数的化简;2三角函数的单调性.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服