资源描述
正切函数的诱导公式
一、教学思路
【创设情境,揭示课题】
同学们已经知道,在正、余弦函数中,我们是先学诱导公式,再学图像与性质的。在学正切函数时,我们为什么要先学图像与性质,再学诱导公式呢?
【探究新知】
0
y
x
观看下图,角α与角2π+α,2π-α,π+α,π-α,-α的正切函数值有何关系?
我们可以归纳出以下公式:π-α,
tan(2π+α)=tanα
tan(-α)=-tanα
tan(2π-α)=-tanα
tan(π-α)=-tanα
tan(π+α)=tanα
【巩固深化,进展思维】
1. 例题讲评
例1.若tanα=,借助三角函数定义求角α的正弦函数值和余弦函数值。
解:∵tanα=>0,∴α是第一象限或第三象限的角
(1)假如α是第一象限的角,则由tanα=可知,角α终边上必有一点P(3,2).
所以x=3,y=2. ∵r=|OP|= ∴sinα==, cosα==.
(2) 假如α是第三象限角,同理可得:sinα==-, cosα==-.
例2.化简:
解:原式===-.
2.同学课堂练习
二、归纳整理,整体生疏
(1)请同学回顾本节课所学过的学问内容有哪些?所涉及的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
三、布置作业:
四、课后反思
w.w.w.k.s.5.u.c.o.m
展开阅读全文