1、第5讲椭圆基础巩固题组(建议用时:40分钟)一、选择题1设F1,F2分别是椭圆1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|3,则P点到椭圆左焦点的距离为()A4 B3 C2 D5解析由题意知,在PF1F2中,|OM|PF2|3,|PF2|6,|PF1|2a|PF2|1064.答案A2已知椭圆1的焦距为4,则m等于()A4 B8 C4或8 D以上均不对解析由得2mb0)的离心率等于,其焦点分别为A,B,C为椭圆上异于长轴端点的任意一点,则在ABC中,的值等于_解析在ABC中,由正弦定理得,由于点C在椭圆上,所以由椭圆定义知|CA|CB|2a,而|AB|2c,所以3.答案38(202
2、1杭州二中调研)已知F1(c,0),F2(c,0)为椭圆1(ab0)的两个焦点,P为椭圆上一点,且c2,则此椭圆离心率的取值范围是_解析设P(x,y),则(cx,y)(cx,y)x2c2y2c2,将y2b2x2代入式解得x2,又x20,a2,2c2a23c2,e.答案三、解答题9(2022新课标全国卷)设F1,F2分别是椭圆C:1(ab0)的左,右焦点,M是C上一点且MF2与x轴垂直直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b.解(1)依据c及题设知M,2b23ac.将b2a2c2代入2b23ac,
3、解得或2(舍去)故C的离心率为.(2)由题意,知原点O为F1F2的中点,MF2y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故4,即b24a.由|MN|5|F1N|,得|DF1|2|F1N|.设N(x1,y1),由题意知y10,则即代入C的方程,得1.将及c代入得1.解得a7,b24a28,故a7,b 2 .10(2022绍兴模拟)如图,椭圆1(ab0)的左、右焦点分别为F1(c,0),F2(c,0)已知点M在椭圆上,且点M到两焦点距离之和为4.(1)求椭圆的方程;(2)设与MO(O为坐标原点)垂直的直线交椭圆于A,B(A,B不重合),求的取值范围解(1)2a4,a2,又M在
4、椭圆上,1,解得b22,所求椭圆方程1.(2)由题意知kMO,kAB.设直线AB的方程为yxm,联立方程组消去y,得13x24mx2m240,(4m)2413(2m24)8(12m213m226)0,m226,设A(x1,y1),B(x2,y2),由根与系数的关系得x1x2,x1x2,则x1x2y1y27x1x2m(x1x2)m2.的取值范围是.力量提升题组(建议用时:35分钟)11(2022金华十校测试与评估)设F1,F2分别是椭圆E:1的左、右焦点,过F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|()A. B3 C. D2解析依题意得|AF1|A
5、F2|BF1|BF2|(|AF1|BF1|)(|AF2|BF2|)|AB|(|AF2|BF2|)3|AB|42,|AB|,故选C.答案C12在椭圆1内,通过点M(1,1),且被这点平分的弦所在的直线方程为()Ax4y50 Bx4y50C4xy50 D4xy50解析设直线与椭圆交点为A(x1,y1),B(x2,y2),则由,得0,因所以,所以所求直线方程为y1(x1),即x4y50.答案A13(2021陕西五校联考)椭圆1(a为定值,且a)的左焦点为F,直线xm与椭圆相交于点A,B.若FAB的周长的最大值是12,则该椭圆的离心率是_解析设椭圆的右焦点为F,如图,由椭圆定义知,|AF|AF|BF|
6、BF|2a.又FAB的周长为|AF|BF|AB|AF|BF|AF|BF|4a,当且仅当AB过右焦点F时等号成立此时4a12,则a3.故椭圆方程为1,所以c2,所以e.答案14设F1、F2分别为椭圆C:1(ab0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,F1到直线l的距离为2.(1)求椭圆C的焦距;(2)假如2,求椭圆C的方程解(1)设椭圆C的焦距为2c,由已知可得F1到直线l的距离c2,故c2.所以椭圆C的焦距为4.(2)设A(x1,y1),B(x2,y2),由2及l的倾斜角为60,知y10,直线l的方程为y(x2)由消去x,整理得(3a2b2)y24b2y
7、3b40.解得y1,y2.由于2,所以y12y2,即2,解得a3.而a2b24,所以b25.故椭圆C的方程为1.15(2022辽宁卷)圆x2y24的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图)双曲线C1:1(a0,b0)过点P且离心率为.(1)求C1的方程;(2)椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点若以线段AB为直径的圆过点P,求l的方程解(1)设切点坐标为(x0,y0)(x00,y00),则切线斜率为,切线方程为yy0(xx0),即x0xy0y4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S.由xy42x0
8、y0知当且仅当x0y0时,x0y0有最大值,即S有最小值,因此点P的坐标为(,)由题意知解得a21,b22,故C1的方程为x21.(2)由(1)知C2的焦点坐标为(,0),(,0),由此设C2的方程为1,其中b10.由P(,)在C2上,得1,解得b3,因此C2的方程为1.明显,l不是直线y0.设l的方程为xmy,点A(x1,y1),B(x2,y2),由得(m22)y22my30.又y1,y2是方程的根,因此由x1my1,x2my2,得由于(x1,y1),(x2,y2),由题意知0,所以x1x2(x1x2)y1y2(y1y2)40,将,代入整理得2m22m4110,解得m1或m1.因此直线l的方
9、程为xy0或xy0.16.(2022江苏卷)如图,在平面直角坐标系xOy中,F1,F2分别是椭圆1(ab0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为,且|BF2|,求椭圆的方程;(2)若F1CAB,求椭圆离心率e的值解设椭圆的焦距为2c,则F1(c,0),F2(c,0)(1)由于B(0,b),所以|BF2|a.又|BF2|,故a.由于点C在椭圆上,所以1,解得b21.故所求椭圆的方程为y21.(2)由于B(0,b),F2(c,0)在直线AB上,所以直线AB的方程为1.解方程组得所以点A的坐标为.又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为.由于直线F1C的斜率为,直线AB的斜率为,且F1CAB,所以1.又b2a2c2,整理得a25c2.故e2,因此e.特殊提示:老师配赠习题、课件、视频、图片、文档等各种电子资源见创新设计高考总复习光盘中内容.