ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:111.04KB ,
资源ID:3813215      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3813215.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2022届-数学一轮(理科)-浙江专用-课时作业-第八章-解析几何-5-.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届-数学一轮(理科)-浙江专用-课时作业-第八章-解析几何-5-.docx

1、 第5讲 椭 圆 基础巩固题组 (建议用时:40分钟)                    一、选择题 1.设F1,F2分别是椭圆+=1的左、右焦点,P为椭圆上一点,M是F1P的中点,|OM|=3,则P点到椭圆左焦点的距离为 (  ) A.4 B.3 C.2 D.5 解析 由题意知,在△PF1F2中,|OM|=|PF2|=3, ∴|PF2|=6,∴|PF1|=2a-|PF2|=10-6=4. 答案 A 2.已知椭圆+=1的焦距为4,则m等于 (  ) A.4 B.8 C.4或8 D.以上均不对 解析 由得2

2、-2)=4或(m-2)-(10-m)=4, 解得m=4或m=8. 答案 C 3.(2021·诸暨质量检测)已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于,则C的方程是 (  ) A.+=1 B.+=1 C.+=1 D.+y2=1 解析 依题意,所求椭圆的焦点位于x轴上,且c=1,e==⇒a=2,b2=a2-c2=3,因此其方程是+=1,故选C. 答案 C 4.(2022·宁波二中一模)已知椭圆+=1上有一点P,F1,F2是椭圆的左、右焦点,若△F1PF2为直角三角形,则这样的点P有 (  ) A.3个 B.4个 C.6个 D.8个 解析 当∠PF

3、1F2为直角时,依据椭圆的对称性知,这样的点P有2个;同理当∠PF2F1为直角时,这样的点P有2个;当P点为椭圆的短轴端点时,∠F1PF2最大,且为直角,此时这样的点P有2个.故符合要求的点P有6个. 答案 C 5.(2021·辽宁卷)已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|BF|=8,cos∠ABF=,则C的离心率为 (  ) A. B. C. D. 解析 如图,设|AF|=x,则cos∠ABF==. 解得x=6,∴∠AFB=90

4、°,由椭圆及直线关于原点对称可知|AF1|=8,∠FAF1=∠FAB+∠FBA=90°,△FAF1是直角三角形,所以|F1F|=10,故2a=8+6=14,2c=10,∴=. 答案 B 二、填空题 6.已知P为椭圆+=1上的一点,M,N分别为圆(x+3)2+y2=1和圆(x-3)2+y2=4上的点,则|PM|+|PN|的最小值为________. 解析 由题意知椭圆的两个焦点F1,F2分别是两圆的圆心,且|PF1|+|PF2|=10,从而|PM|+|PN|的最小值为|PF1|+|PF2|-1-2=7. 答案 7 7.已知椭圆+=1 (a>b>0)的离心率等于,其焦点分别为A,B

5、C为椭圆上异于长轴端点的任意一点,则在△ABC中,的值等于________. 解析 在△ABC中,由正弦定理得=,由于点C在椭圆上,所以由椭圆定义知|CA|+|CB|=2a,而|AB|=2c,所以===3. 答案 3 8.(2021·杭州二中调研)已知F1(-c,0),F2(c,0)为椭圆+=1(a>b>0)的两个焦点,P为椭圆上一点,且·=c2,则此椭圆离心率的取值范围是________. 解析 设P(x,y),则·=(-c-x,-y)·(c-x,-y)=x2-c2+y2=c2,① 将y2=b2-x2代入①式解得 x2==, 又x2∈[0,a2],∴2c2≤a2≤3c2,∴e

6、=∈. 答案  三、解答题 9.(2022·新课标全国Ⅱ卷)设F1,F2分别是椭圆C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直.直线MF1与C的另一个交点为N. (1)若直线MN的斜率为,求C的离心率; (2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b. 解 (1)依据c=及题设知M,=,2b2=3ac. 将b2=a2-c2代入2b2=3ac,解得=或=-2(舍去).故C的离心率为. (2)由题意,知原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故=4,即b2=4a. ① 由|M

7、N|=5|F1N|,得|DF1|=2|F1N|. 设N(x1,y1),由题意知y1<0,则 即 代入C的方程,得+=1. ② 将①及c=代入②得+=1. 解得a=7,b2=4a=28, 故a=7,b= 2 . 10.(2022·绍兴模拟)如图,椭圆+=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0).已知点M在椭圆上,且点M到两焦点距离之和为4. (1)求椭圆的方程; (2)设与MO(O为坐标原点)垂直的直线交椭圆于A,B(A,B不重合),求·的取值范围. 解 (1)∵2a=4,∴a=2, 又M在椭圆上, ∴+=1,解得b2=2, ∴所求椭圆方

8、程+=1. (2)由题意知kMO=,∴kAB=-. 设直线AB的方程为y=-x+m, 联立方程组 消去y,得13x2-4mx+2m2-4=0, Δ=(-4m)2-4×13×(2m2-4)=8(12m2-13m2+26)>0, ∴m2<26,设A(x1,y1),B(x2,y2), 由根与系数的关系得x1+x2=,x1x2=, 则·=x1x2+y1y2=7x1x2-m(x1+x2)+m2=∈. ∴·的取值范围是. 力量提升题组 (建议用时:35分钟)                    11.(2022·金华十校测试与评估)设F1,F2分别是椭圆E:+=1的左、右焦点,过

9、F1的直线l与E相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列,则|AB|= (  ) A. B.3 C. D.2 解析 依题意得|AF1|+|AF2|+|BF1|+|BF2|=(|AF1|+|BF1|)+(|AF2|+|BF2|)=|AB|+(|AF2|+|BF2|)=3|AB|=4×2,|AB|=,故选C. 答案 C 12.在椭圆+=1内,通过点M(1,1),且被这点平分的弦所在的直线方程为 (  ) A.x+4y-5=0 B.x-4y-5=0 C.4x+y-5=0 D.4x-y-5=0

10、 解析 设直线与椭圆交点为A(x1,y1),B(x2,y2), 则 由①-②,得 +=0, 因 所以=-=-, 所以所求直线方程为y-1=-(x-1), 即x+4y-5=0. 答案 A 13.(2021·陕西五校联考)椭圆+=1(a为定值,且a>)的左焦点为F,直线x=m与椭圆相交于点A,B.若△FAB的周长的最大值是12,则该椭圆的离心率是________. 解析 设椭圆的右焦点为F′,如图,由椭圆定义知,|AF|+|AF′|=|BF|+|BF′|=2a. 又△FAB的周长为|AF|+|BF|+|AB|≤|AF|+|BF|+|AF′|+|BF′|=4a, 当且仅当AB

11、过右焦点F′时等号成立. 此时4a=12,则a=3.故椭圆方程为+=1, 所以c=2,所以e==. 答案  14.设F1、F2分别为椭圆C:+=1(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2. (1)求椭圆C的焦距; (2)假如=2,求椭圆C的方程. 解 (1)设椭圆C的焦距为2c,由已知可得F1到直线l的距离c=2,故c=2.所以椭圆C的焦距为4. (2)设A(x1,y1),B(x2,y2),由=2及l的倾斜角为60°,知y1<0,y2>0,直线l的方程为y=(x-2). 由消去x, 整理得(3a2

12、+b2)y2+4b2y-3b4=0. 解得y1=,y2=. 由于=2,所以-y1=2y2, 即=2·,解得a=3. 而a2-b2=4,所以b2=5.故椭圆C的方程为+=1. 15.(2022·辽宁卷)圆x2+y2=4的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图).双曲线C1:-=1(a>0,b>0)过点P且离心率为. (1)求C1的方程; (2)椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点.若以线段AB为直径的圆过点P,求l的方程. 解 (1)设切点坐标为(x0,y0)(x0>0,y0>0), 则切线

13、斜率为-,切线方程为y-y0=-(x-x0), 即x0x+y0y=4,此时,两个坐标轴的正半轴与切线围成的三角形面积为S=··=. 由x+y=4≥2x0y0知当且仅当x0=y0=时,x0y0有最大值,即S有最小值,因此点P的坐标为(,). 由题意知 解得a2=1,b2=2,故C1的方程为x2-=1. (2)由(1)知C2的焦点坐标为(-,0),(,0),由此设C2的方程为+=1,其中b1>0. 由P(,)在C2上,得+=1, 解得b=3,因此C2的方程为+=1. 明显,l不是直线y=0. 设l的方程为x=my+,点A(x1,y1),B(x2,y2), 由得(m2+2)y2+

14、2my-3=0. 又y1,y2是方程的根,因此 由x1=my1+,x2=my2+,得 由于=(-x1,-y1),=(-x2,-y2), 由题意知·=0, 所以x1x2-(x1+x2)+y1y2-(y1+y2)+4=0,⑤ 将①,②,③,④代入⑤整理得2m2-2m+4-11=0, 解得m=-1或m=-+1.因此直线l的方程为 x-y-=0或x+y-=0. 16.(2022·江苏卷)如图,在平面直角坐标系xOy中,F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.

15、 (1)若点C的坐标为,且|BF2|=,求椭圆的方程; (2)若F1C⊥AB,求椭圆离心率e的值. 解 设椭圆的焦距为2c,则F1(-c,0),F2(c,0). (1)由于B(0,b),所以|BF2|==a. 又|BF2|=,故a=. 由于点C在椭圆上, 所以+=1,解得b2=1. 故所求椭圆的方程为+y2=1. (2)由于B(0,b),F2(c,0)在直线AB上, 所以直线AB的方程为+=1. 解方程组得 所以点A的坐标为. 又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为. 由于直线F1C的斜率为=,直线AB的斜率为-,且F1C⊥AB,所以·=-1.又b2=a2-c2,整理得a2=5c2. 故e2=,因此e=. 特殊提示:老师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服