1、3.1.2 用二分法求方程的近似解教学分析求方程的解是常见的数学问题,这之前我们学过解一元一次、一元二次方程,但有些方程求精确解较难.本节从另一个角度来求方程的近似解,这是一种崭新的思维方式,在现实生活中也有着广泛的应用.用二分法求方程近似解的特点是:运算量大,且重复相同的步骤,因此适合用计算器或计算机进行运算.在教学过程中要让同学体会到人类在方程求解中的不断进步.三维目标1.让同学学会用二分法求方程的近似解,知道二分法是科学的数学方法.2.了解用二分法求方程的近似解特点,学会用计算器或计算机求方程的近似解,初步了解算法思想.3.回忆解方程的历史,了解人类解方程的进步历程,激发学习的热忱和学习
2、的爱好.重点难点用二分法求方程的近似解.课时支配1课时教学过程导入新课思路1.(情景导入)师:(手拿一款手机)假如让你来猜这件商品的价格,你如何猜?生1:先初步估算一个价格,假如高了再每隔10元降低报价.生2:这样太慢了,先初步估算一个价格,假如高了每隔100元降低报价.假如低了,每50元上升;假如再高了,每隔20元降低报价;假如低了,每隔10元上升报价生3:先初步估算一个价格,假如高了,再报一个价格;假如低了,就报两个价格和的一半;假如高了,再把报的低价与一半价相加再求其半,报出价格;假如低了,就把刚刚报出的价格与前面的价格结合起来取其和的半价师:在现实生活中我们也经常利用这种方法.譬如,一
3、天,我们华庄校区与锡南校区的线路出了故障,(相距大约3 500米)电工是怎样检测的呢?是依据生1那样每隔10米或者依据生2那样每隔100米来检测,还是依据生3那样来检测呢?生:(齐答)依据生3那样来检测.师:生3的回答,我们可以用一个动态过程来呈现一下(呈现多媒体课件,区间靠近法).思路2.(事例导入)有12个小球,质量均匀,只有一个球是比别的球重,你用天平称几次可以找出这个球,要求次数越少越好.(让同学们自由发言,找出最好的方法)解:第一次,两端各放六个球,低的那一端确定有重球.其次次,两端各放三个球,低的那一端确定有重球.第三次,两端各放一个球,假如平衡,剩下的就是重球,否则,低的就是重球
4、.其实这就是一种二分法的思想,那什么叫二分法呢?推动新课新知探究提出问题解方程2x-16=0.解方程x2-x-2=0.解方程x3-2x2-x+2=0.解方程(x2-2)(x2-3x+2)=0.我们知道,函数f(x)=lnx+2x-6在区间(2,3)内有零点.进一步的问题是,如何找出这个零点的近似值?“取中点”后,怎样推断所在零点的区间?什么叫二分法?试求函数f(x)=lnx+2x-6在区间(2,3)内零点的近似值.总结用二分法求函数零点近似值的步骤.思考用二分法求函数零点近似值的特点.争辩结果:x=8.x=-1,x=2.x=-1,x=1,x=2.x=,x=,x=1,x=2.假如能够将零点所在的
5、范围尽量缩小,那么在确定精确度的要求下,我们可以得到零点的近似值.为了便利,我们通过“取中点”的方法逐步缩小零点所在的范围.“取中点”,一般地,我们把x=称为区间(a,b)的中点比如取区间(2,3)的中点2.5,用计算器算得f(2.5)0,由于f(2.5)f(3)0,所以零点在区间(2.5,3)内.对于在区间a,b上连续不断且f(a)f(b)0的函数y=f(x),通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫二分法(bisection).由于函数f(x)=lnx+2x-6,用计算器或计算机作出函数f(x)=lnx+2x-6的对应值表.x123
6、456789f(x)-4-1.3061.09863.38635.60947.79189.945912.079414.1972由表可知,f(2)0,则f(2)f(3)0,这说明f(x)在区间内有零点x0,取区间(2,3)的中点x1=2.5,用计算器算得f(2.5)-0.084,由于f(2.5)f(3)0,所以x0(2.5,3).同理,可得表(下表)与图象(如图3-1-2-1).区间中点的值中点函数的近似值(2,3)2.5-0.084(2.5,3)2.750.512(2.5,2.75)2.6250.215(2.5,2.625)2.56250.066(2.5,2.5625)2.53-1-2-5-0.
7、009(2.53-1-2-5,2.5625)2.5468750.029(2.53-1-2-5,2.546875)2.53906250.010(2.53-1-2-5,2.5390625)2.535156250.001图3-1-2-1由于(2,3)(2.5,3)(2.5,2.75),所以零点所在的范围的确越来越小了.假如重复上述步骤,那么零点所在的范围会越来越小(见上表).这样,在确定的精确度下,我们可以在有限次重复相同步骤后,将所得的零点所在区间内的任意一点作为函数零点的近似值.特殊地,可以将区间端点作为函数零点的近似值.例如,当精确度为0.01时,由于|2.5390625-2.53-1-2-5
8、|=0.00781250.01,所以,我们可以将x=2.53-1-2-5作为函数f(x)=lnx+2x-6零点的近似值.给定精度,用二分法求函数f(x)的零点近似值的步骤如下:1确定区间a,b,验证f(a)f(b)0,给定精度.2求区间(a,b)的中点c.3计算f(c):a.若f(c)=0,则c就是函数的零点;b.若f(a)f(c)0,则令b=c此时零点x0(a,c);c.若f(c)f(b)0,则令a=c此时零点x0(c,b).4推断是否达到精度;即若|a-b|,则得到零点值a(或b);否则重复步骤24由函数的零点与相应方程的关系,我们可用二分法来求方程的近似解.由于计算量较大,而且是重复相同
9、的步骤,因此,我们可以通过设计确定的计算程序,借助计算器或计算机完成计算.应用示例思路1例1借助计算器或计算机用二分法求方程2x+3x=7的近似解(精确度为0.1).活动:师生共同探讨沟通,引出借助函数f(x)=2x+3x-7的图象,能够缩小根所在区间,并依据f(1)0,可得出根所在区间(1,2);引发同学思考,如何进一步有效缩小根所在的区间;共同探讨各种方法,引导同学探寻出通过不断对分区间,有助于问题的解决;用图例演示根所在区间不断被缩小的过程,加深同学对上述方法的理解;引发同学思考在有效缩小根所在区间时,到什么时候才能达到所要求的精确度.同学简述上述求方程近似解的过程.解:原方程即2x+3
10、x-7=0,令f(x)=2x+3x-7,用计算器或计算机做出函数f(x)=2x+3x-7的对应值表与图象(3-1-2-2).x012345678f(x)-6-2310214075142273图3-1-2-2观看图表可知f(1)f(2)0,说明这个函数在区间(1,2)内有零点x0.取区间(1,2)的中点x=1.5,用计算器算得f(1.5)0.33.由于f(1)f(1.5)0,所以x0(1,1.5).再取区间(1,1.5)的中点x=1.25,用计算器算得f(1.25)-0.87.由于f(1.25)f(1.5)0,所以x0(1.25,1.5).同理,可得,x0(1.375,1.5),x0(1.375
11、,1.4375).由于|1.375-1.437 5|=0.06250.1,所以,原方程的近似解可取为1.4375.例2利用计算器,求方程x2-2x-1=0的一个近似解(精确度0.1)活动:老师挂念同学分析:画出函数f(x)=x2-2x-1的图象,如图3-1-2-3所示.从图象上可以发觉,方程x2-2x-1=0的一个根x1在区间(2,3)内,另一个根x2在区间(-1,0)内.依据图象,我们发觉f(2)=-10,这表明此函数图象在区间(2,3)上穿过x轴一次,即方程f(x)=0在区间(2,3)上有唯一解.图3-1-2-3计算得f()=0,发觉x1(2,2.5)(如图3-1-2-3),这样可以进一步
12、缩小x1所在的区间.解:设f(x)=x2-2x-1,先画出函数图象的简图,如图3-1-2-3.由于f(2)=-10,所以在区间(2,3)内,方程x2-2x-1=0有一解,记为x1.取2与3的平均数2.5,由于f(2.5)=0.250,所以2x12.5.再取2与2.5的平均数2.25,由于f(2.25)=-0.437 50,所以2.25x12.5.如此连续下去,得f(2)0x1(2,3),f(2)0x1(2,2.5),f(2.25)0x1(2.25,2.5),f(2.375)0x1(2.375,2.5),f(2.375)0x1(2.375,2.437 5).由于2.375与2.437 5精确到0
13、.1的近似值都为2.4,所以此方程的近似解为x12.4.点评:利用同样的方法,还可以求出方程的另一个近似解.思路2例1利用计算器,求方程lgx=3-x的近似解(精确度0.1).活动:同学先思考或争辩后再回答,老师点拨、提示并准时评价同学.分别画出y=lgx和y=3-x的图象,如图3124所示.在两个函数图象的交点处,函数值相等.因此,这个点的横坐标就是方程lgx=3-x的解.由函数y=lgx与y=3-x的图象可以发觉,方程lgx=3-x有唯一解,记为x1,并且这个解在区间(2,3)内.图3-1-2-4解:设f(x)=lgx+x-3,设x1为函数的零点即方程lgx=3-x的解.用计算器计算,得f
14、(2)0x1(2,3),f(2.5)0x1(2.5,3),f(2.5)0x1(2.5,2.75),f(2.5)0x1(2.5,2.625),f(2.562 5)0x1(2.562 5,2.625).由于2.562 5与2.625精确到0.1的近似值都为2.6,所以原方程的近似解为x12.6.例2求方程lnx-2x+3=0在区间1,2内的根(精确度0.1).解:设f(x)=lnx-2x+3,则原方程的根为函数f(x)的零点.设x1为函数的零点即方程lnx-2x+3=0的解.如图3-1-2-5,由于f(1)=1,f(2)=-0.306 852 819,所以f(1)f(2)0,f(1.812 5)=
15、-0.030 292 8920,所以x1(1.75,1.812 5).由于|1.812 5-1.75|=0.062 50.1,所以区间(1.75,1.812 5)内的每一个实数都可以作为方程lnx-2x+3=0在区间1,2内的根.点评:先设出方程对应的函数,画出函数的图象,初步确定解所在的区间,再用二分法求方程近似解.二分法,即渐渐靠近的方法.计算量较大,而且是重复相同的步骤,借助计算器或计算机完成计算比较简洁.知能训练1.依据下表中的数据,可以断定方程ex-x-2=0的一个根所在的区间为( )x-10123ex0.3712.277.3920.0x+212345A.(-1,0) B.(0,1)
16、 C.(1,2) D.(2,3)2.用二分法推断方程2x=x2的根的个数为( )A.1 B.2 C.3 D.4答案:1.C.设f(x)=ex-x-2,f(1)0,即f(1)f(2)0,f(1.5)=-2.8750,所以f(x)=-x3-3x+5在区间(1,1.5)上有一个零点.又由于f(x)是(-,+)上的减函数,所以f(x)=-x3-3x+5在区间(1,1.5)上有且只有一个零点.(2)作出函数图象(图3-1-2-8(2),由于f(3)0,所以f(x)=2xln(x-2)-3在区间(3,4)上有一个零点.又由于f(x)=2xln(x-2)-3在(2,+)上是增函数,所以f(x)在(3,4)上
17、有且仅有一个零点.(3)作出函数图象(图3-1-2-8(3),由于f(0)0,所以f(x)=ex-1+4x-4在区间(0,1)上有一个零点.又由于f(x)=ex-1+4x-4在(-,+)上是增函数,所以f(x)在(0,1)上有且仅有一个零点.(4)作出函数图象(图3-1-2-8(4),由于f(-4)0,f(-2)0,f(2)0,所以f(x)=3(x+2)(x-3)(x+4)+x在(-4,-3),(-3,-2),(2,3)上各有一个零点.图3-1-2-8(课本第91页练习)1.由题设可知f(0)=-1.40,于是f(0)f(1)0,所以函数f(x)在区间(0,1)内有一个零点x0.下面用二分法求
18、函数f(x)=x3+1.1x2+0.9x-1.4在区间(0,1)内的零点.取区间(0,1)的中点x1=0.5,用计算器可算得f(0.5)=-0.55.由于f(0.5)f(1)0,所以x0(0.5,1).再取区间(0.5,1)的中点x2=0.75,用计算器可算得f(0.75)0.32.由于f(0.5)f(0.75)0,所以x0(0.5,0.75).同理,可得x0(0.625,0.75),x0(0.625,0.687 5),x0(0.656 25,0.687 5).由于|0.687 5-0.656 25|=0.031 250.1,所以原方程的近似解可取为0.656 25.2.原方程可化为x+lgx
19、-3=0,令f(x)=x+lgx-3,用计算器可算得f(2)-0.70,f(3)0.48.于是f(2)f(3)0,所以这个方程在区间(2,3)内有一个解x0.下面用二分法求方程x=3-lgx在区间(2,3)的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)-0.10.由于f(2.5)f(3)0,所以x0(2.5,3).再取区间(2.5,3)的中点x2=2.75,用计算器可算得f(2.75)0.19.由于f(2.5)f(2.75)0,所以x0(2.5,2.75).同理,可得x0(2.5,2.625),x0(2.562 5,2.625),x0(2.562 5,2.593 75
20、),x0(2.578 125,2.593 75),x0(2.585 937 5,2.59 375).由于|2.585 937 5-2.593 75|=0.007 812 50.01,所以原方程的近似解可取为2.593 75.(课本第92页习题3.1)A组1.A,C点评:需了解二分法求函数的近似零点的条件.2.由x,f(x)的对应值表可得f(2)f(3)0,f(3)f(4)0,f(4)f(5)0,又依据“假如函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且f(a)f(b)0,那么函数y=f(x)在区间(a,b)内有零点.”可知函数f(x)分别在区间(2,3),(3,4),(4,5)
21、内有零点.3.原方程即(x+1)(x-2)(x-3)-1=0,令f(x)=(x+1)(x-2)(x-3)-1,可算得f(-1)=-1,f(0)=5.于是f(-1)f(0)0,所以这个方程在区间(-1,0)内有一个解.下面用二分法求方程(x+1)(x-2)(x-3)=1在区间(-1,0)内的近似解.取区间(-1,0)的中点x1=-0.5,用计算器可算得f(-0.5)=3.375.由于f(-1)f(-0.5)0,所以x0(-1,-0.5).再取(-1,-0.5)的中点x2=-0.75,用计算器可算得f(-0.75)1.58.由于f(-1)f(-0.75)0,所以x0(-1,-0.75).同理,可得
22、x0(-1,-0.875),x0(-0.937 5,-0.875).由于|(-0.875)-(-0.937 5)|=0.062 50.1,所以原方程的近似解可取为-0.937 5.4.原方程即0.8x-1-lnx=0,令f(x)=0.8x-1-lnx,f(0)没有意义,用计算器算得f(0.5)0.59,f(1)=-0.2.于是f(0.5)f(1)0,所以这个方程在区间(0.5,1)内有一个解.下面用二分法求方程0.8x-1=lnx在区间(0,1)内的近似解.取区间(0.5,1)的中点x1=0.75,用计算器可算得f(0.75)0.13.由于f(0.75)f(1)0,所以x0(0.75,1).再
23、取(0.75,1)的中点x2=0.875,用计算器可算得f(0.875)-0.04.由于f(0.875)f(0.75)0,所以x0(0.75,0.875).同理,可得x0(0.812 5,0.875),x0(0.812 5,0.843 75).由于|0.812 5-0.843 75|=0.031 250.1,所以原方程的近似解可取为0.843 75.5.由题设有f(2)-0.310,于是f(2)f(3)0,所以函数f(x)在区间(2,3)内有一个零点.下面用二分法求函数f(x)=lnx在区间(2,3)内的近似解.取区间(2,3)的中点x1=2.5,用计算器可算得f(2.5)0.12.由于f(2
24、)f(2.5)0,所以x0(2,2.5).再取(2,2.5)的中点x2=2.25,用计算器可算得f(2.25)-0.08.由于f(2.25)f(2.5)0,所以x0(2.25,2.5).同理,可得x0(2.25,2.375),x0(2.312 5,2.375),x0(2.343 75,2.375),x0(2.343 75,2.359 375),x0(2.343 75,2.351 562 5),x0(2.343 75,2.347 656 25).由于|2.343 75-2.347 656 25|=0.003 906 250.01,所以原方程的近似解可取为2.347 656 25.B组1.将系数代
25、入求根公式x=,得x=,所以方程的两个解分别为x1=,x2=.下面用二分法求方程的近似解.取区间(1.775,1.8)和(-0.3,-0.275),令f(x)=2x2-3x-1.在区间(1.775,1.8)内用计算器可算得f(1.775)=-0.023 75,f(1.8)=0.08.于是f(1.775)f(1.8)0.所以这个方程在区间(1.775,1.8)内有一个解.由于|1.8-1.775|=0.0250.1,所以原方程在区间(1.775,1.8)内的近似解可取为1.8.同理,可得方程在区间(-0.3,-0.275)内的近似解可取为-0.275.所以方程精确到0.1的近似解分别是1.8和-
26、0.3.2.原方程即x3-6x2-3x+5=0,令f(x)=x3-6x2-3x+5,函数图象如下图所示.图3-1-2-9所以这个方程在区间(-2,0),(0,1),(6,7)内各有一个解.取区间(-2,0)的中点x1=-1,用计算器可算得f(-1)=1.由于f(-2)f(-1)0,所以x0(-2,-1).再取(-2,-1)的中点x2=-1.5,用计算器可算得f(-1.5)=-7.375.由于f(-1.5)f(-1)0,所以x0(-1.5,-1).同理,可得x0(-1.25,-1),x0(-1.125,-1),x0(-1.125,-1.062 5).由于|(-1.062 5)-(-1.125)|
27、=0.062 50.1,所以原方程在区间(-2,0)内的近似解可取为-1.062 5.同理,可得原方程在区间(0,1)内的近似解可取为0.7,在区间(6,7)内的近似解可取为6.3.3.(1)由题设有g(x)=2-f(x)2=2-(x2+3x+2)2=-x4-6x3-13x2-12x-2.(2)函数图象如下图所示.图3-1-2-10(3)由图象可知,函数g(x)分别在区间(-3,-2)和区间(-1,0)内各有一个零点.取区间(-3,-2)的中点x1=-2.5,用计算器可算得g(-2.5)=0.187 5.由于g(-3)g(-2.5)0,所以x0(-3,-2.5).再取(-3,-2.5)的中点x2=-2.75,用计算器可算得g(-2.75)0.28.由于g(-3)g(-2.75)0,所以x0(-3,-2.75).同理,可得x0(-2.875,-2.75),x0(-2.812 5,-2.75).由于|-2.75-(-2.812 5)|=0.062 50.1,所以原方程在区间(-3,-2)内的近似解可取为-2.812 5.同样可求得函数在区间(-1,0)内的零点约为-0.2.所以函数g(x)精确到0.1的零点约为-2.8或-0.2.点评:第2、3题接受信息技术画出函数图象,并据此明确函数零点所在的区间.在教学中,假如没有信息技术条件,建议老师直接给出函数图象或零点所在区间.