收藏 分销(赏)

2020-2021学年高中人教B版数学必修一课时作业:第2章--习题课2.docx

上传人:精**** 文档编号:3806211 上传时间:2024-07-19 格式:DOCX 页数:3 大小:248.60KB 下载积分:5 金币
下载 相关 举报
2020-2021学年高中人教B版数学必修一课时作业:第2章--习题课2.docx_第1页
第1页 / 共3页
2020-2021学年高中人教B版数学必修一课时作业:第2章--习题课2.docx_第2页
第2页 / 共3页


点击查看更多>>
资源描述
习题课 课时目标 1.加深对函数的基本性质的理解.2.培育综合运用函数的基本性质解题的力气. 1.已知f(x)为R上的减函数,则满足f<f(1)的实数x的取值范围是(  ) A.(-1,1) B.(0,1) C.(-1,0)∪(0,1) D.(-∞,-1)∪(1,+∞) 2.定义在R上的函数f(x)对任意两个不相等的实数a,b,总有>0成立,则必有(  ) A.函数f(x)先增后减 B.函数f(x)先减后增 C.f(x)在R上是增函数 D.f(x)在R上是减函数 3.已知函数f(x)在(-∞,+∞)上是增函数,a,b∈R,且a+b>0,则有(  ) A.f(a)+f(b)>-f(a)-f(b) B.f(a)+f(b)<-f(a)-f(b) C.f(a)+f(b)>f(-a)+f(-b) D.f(a)+f(b)<f(-a)+f(-b) 4.函数f(x)的图象如图所示,则最大、最小值分别为(  ) A.f(),f(-) B.f(0),f() C.f(0),f(-) D.f(0),f(3) 5.已知f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________. 6.已知f(x)=若f(a)>a,则实数a的取值范围是________. 1.设f(x)是定义在R上的偶函数,且在(-∞,0)上是增函数,已知x1>0,x2<0,且f(x1)<f(x2),那么确定有(  ) A.x1+x2<0 B.x1+x2>0 C.f(-x1)>f(-x2) D.f(-x1)·f(-x2)<0 2.下列推断: ①假如一个函数的定义域关于坐标原点对称,那么这个函数为偶函数; ②对于定义域为实数集R的任何奇函数f(x)都有f(x)·f(-x)≤0; ③解析式中含自变量的偶次幂而不含常数项的函数必是偶函数; ④既是奇函数又是偶函数的函数存在且唯一. 其中正确的序号为(  ) A.②③④ B.①③ C.② D.④ 3.定义两种运算:a⊕b=ab,a⊗b=a2+b2,则函数f(x)=为(  ) A.奇函数 B.偶函数 C.既不是奇函数也不是偶函数 D.既是奇函数也是偶函数 4.用min{a,b}表示a,b两数中的最小值,若函数f(x)=min{|x|,|x+t|}的图象关于直线x=-对称,则t的值为(  ) A.-2 B.2 C.-1 D.1 5.假如奇函数f(x)在区间[1,5]上是减函数,且最小值为3,那么f(x)在区间[-5,-1]上是(  ) A.增函数且最小值为3 B.增函数且最大值为3 C.减函数且最小值为-3 D.减函数且最大值为-3 6.若f(x)是偶函数,且当x∈[0,+∞)时,f(x)=x-1,则f(x-1)<0的解集是(  ) A.(-1,0) B.(-∞,0)∪(1,2) C.(1,2) D.(0,2) 题 号 1 2 3 4 5 6 答 案 二、填空题 7.若函数f(x)=-为区间[-1,1]上的奇函数,则它在这一区间上的最大值为________. 8.已知函数f(x)是定义域为R的奇函数,且当x>0时,f(x)=2x-3,则f(-2)+f(0)=________. 9.函数f(x)=x2+2x+a,若对任意x∈[1,+∞),f(x)>0恒成立,则实数a的取值范围是________. 三、解答题 10.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),且f(x)在(0,+∞)上是增函数,f(1)=0. (1)求证:函数f(x)在(-∞,0)上是增函数; (2)解关于x的不等式f(x)<0. 11.已知f(x)=,x∈(0,+∞). (1)若b≥1,求证:函数f(x)在(0,1)上是减函数; (2)是否存在实数a,b.使f(x)同时满足下列二个条件: ①在(0,1)上是减函数,(1,+∞)上是增函数; ②f(x)的最小值是3.若存在,求出a,b的值;若不存在,请说明理由. 力气提升 12.设函数f(x)=1-,x∈[0,+∞). (1)用单调性的定义证明f(x)在定义域上是增函数; (2)设g(x)=f(1+x)-f(x),推断g(x)在[0,+∞)上的单调性(不用证明),并由此说明f(x)的增长是越来越快还是越来越慢? 13.如图,有一块半径为2的半圆形纸片,方案剪裁成等腰梯形ABCD的外形,它的下底AB是⊙O的直径,上底CD的端点在圆周上,设CD=2x,梯形ABCD的周长为y. (1)求出y关于x的函数f(x)的解析式; (2)求y的最大值,并指出相应的x值. 1.函数单调性的判定方法 (1)定义法. (2)直接法:运用已知的结论,直接推断函数的单调性,如一次函数,二次函数,反比例函数;还可以依据f(x),g(x)的单调性推断-f(x),,f(x)+g(x)的单调性等. (3)图象法:依据函数的图象推断函数的单调性. 2.函数奇偶性与单调性的差异. 函数的奇偶性是相对于函数的定义域来说的,这一点与争辩函数的单调性不同,从这个意义上说,函数的单调性是函数的“局部”性质,而奇偶性是函数的“整体”性质,只是对函数定义域内的每一个值x,都有f(-x)=-f(x)[或f(-x)=f(x)],才能说f(x)是奇函数(或偶函数). 习题课 双基演练 1.C [由已知条件:>1, 不等式等价于, 解得-1<x<1,且x≠0.] 2.C [由>0, 知f(a)-f(b)与a-b同号, 由增函数的定义知选C.] 3.C [∵a+b>0,∴a>-b,b>-a. 由函数的单调性可知,f(a)>f(-b),f(b)>f(-a). 两式相加得C正确.] 4.C [由图象可知,当x=0时,f(x)取得最大值; 当x=-时,f(x)取得最小值.故选C.] 5. 0 解析 偶函数定义域关于原点对称, ∴a-1+2a=0.∴a=. ∴f(x)=x2+bx+1+b. 又∵f(x)是偶函数,∴b=0. 6.(-∞,-1) 解析 若a≥0,则a-1>a,解得a<-2,∴a∈∅; 若a<0,则>a,解得a<-1或a>1,∴a<-1. 综上,a∈(-∞,-1). 作业设计 1.B [由已知得f(x1)=f(-x1),且-x1<0,x2<0,而函数f(x)在(-∞,0)上是增函数,因此由f(x1)<f(x2),则f(-x1)<f(x2)得-x1<x2,x1+x2>0.故选B.] 2.C [推断①,一个函数的定义域关于坐标原点对称,是这个函数具有奇偶性的前提条件,但并非充分条件,故①错误. 推断②正确,由函数是奇函数,知f(-x)=-f(x),特殊地当x=0时,f(0)=0,所以f(x)·f(-x)=-[f(x)]2≤0. 推断③,如f(x)=x2,x∈[0,1],定义域不关于坐标原点对称,即存在1∈[0,1],而-1∉[0,1];又如f(x)=x2+x,x∈[-1,1],有f(x)≠f(-x).故③错误. 推断④,由于f(x)=0,x∈[-a,a],依据确定一个函数的两要素知,a取不同的实数时,得到不同的函数.故④错误. 综上可知,选C.] 3.A [f(x)=,f(-x)=-f(x),选A.] 4.D [当t>0时f(x)的图象如图所示(实线) 对称轴为x=-,则=,∴t=1.] 5.D [当-5≤x≤-1时1≤-x≤5, ∴f(-x)≥3,即-f(x)≥3. 从而f(x)≤-3, 又奇函数在原点两侧的对称区间上单调性相同, 故f(x)在[-5,-1]是减函数.故选D.] 6.D [依题意,由于f(x)是偶函数,所以f(x-1)<0化为f(|x-1|)<0, 又x∈[0,+∞)时,f(x)=x-1,所以|x-1|-1<0, 即|x-1|<1,解得0<x<2,故选D.] 7.1 解析 f(x)为[-1,1]上的奇函数,且在x=0处有定义, 所以f(0)=0,故a=0. 又f(-1)=-f(1),所以-=, 故b=0,于是f(x)=-x. 函数f(x)=-x在区间[-1,1]上为减函数, 当x取区间左端点的值时,函数取得最大值1. 8.-1 解析 ∵f(-0)=-f(0),∴f(0)=0, 且f(2)=22-3=1. ∴f(-2)=-f(2)=-1, ∴f(-2)+f(0)=-1. 9.a>-3 解析 ∵f(x)=x2+2x+a=(x+1)2+a-1, ∴[1,+∞)为f(x)的增区间, 要使f(x)在[1,+∞)上恒有f(x)>0,则f(1)>0, 即3+a>0,∴a>-3. 10.(1)证明 设x1<x2<0,则-x1>-x2>0. ∵f(x)在(0,+∞)上是增函数, ∴f(-x1)>f(-x2). 由f(x)是奇函数, ∴f(-x1)=-f(x1),f(-x2)=-f(x2), ∴-f(x1)>-f(x2),即f(x1)<f(x2). ∴函数f(x)在(-∞,0)上是增函数. (2)解 若x>0,则f(x)<f(1), ∴x<1,∴0<x<1; 若x<0,则f(x)<f(-1),∴x<-1. ∴关于x的不等式f(x)<0的解集为(-∞,-1)∪(0,1). 11.(1)证明 设0<x1<x2<1, 则x1x2>0,x1-x2<0. 又b>1,且0<x1<x2<1,∴x1x2-b<0. ∵f(x1)-f(x2)=>0, ∴f(x1)>f(x2), 所以函数f(x)在(0,1)上是减函数. (2)解 设0<x1<x2<1, 则f(x1)-f(x2)= 由函数f(x)在(0,1)上是减函数, 知x1x2-b<0恒成立,则b≥1. 设1<x1<x2,同理可得b≤1,故b=1. x∈(0,+∞)时,通过图象可知f(x)min=f(1)=a+2=3. 故a=1. 12.解 (1)设x1>x2≥0,f(x1)-f(x2)=(1-)-(1-)=. 由x1>x2≥0⇒x1-x2>0,(x1+1)(x2+1)>0, 得f(x1)-f(x2)>0,即f(x1)>f(x2). 所以f(x)在定义域上是增函数. (2)g(x)=f(x+1)-f(x)=, g(x)在[0,+∞)上是减函数,自变量每增加1,f(x)的增加值越来越小,所以f(x)的增长是越来越慢. 13.解 (1)作OH,DN分别垂直DC,AB交于H,N, 连结OD.由圆的性质,H是中点,设OH=h, h==. 又在直角△AND中,AD= ===2, 所以y=f(x)=AB+2AD+DC=4+2x+4,其定义域是(0,2). (2)令t=,则t∈(0,),且x=2-t2, 所以y=4+2·(2-t2)+4t=-2(t-1)2+10, 当t=1,即x=1时,y的最大值是10.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服