1、本页为作品封面,下载后可以自由编辑删除,欢迎下载! 精 品文档1【精品word文档、可以自由编辑!】某城镇生活污水处理工程设计摘 要:XX市XX镇生活污水处理厂设计处理规模12000m3/d,采用氧化沟工艺作为废水脱氮除磷阶段核心处理工艺,该工艺流程简单、构筑物少、处理效率高、投资省。经处理后出水水质达到城镇污水处理厂污染物排放标准(GB18918-2002)的一级B标,总投资约1600万元。关键词:生活废水;氧化沟工艺; 前言XX镇位于四川XX市境内中部平原地区。东邻XX镇、XX乡,南接XX乡、XX镇,西连XX镇,北靠XX镇。1985年并乡入镇,仍名XX镇。幅员面积50.7平方公里,耕地面积
2、3975亩。XX镇历来是XX市商贸重镇,享有大蒜之乡、川剧之乡和兰花之乡的美誉。1992年被XX市列为优先发展经济一条线乡镇,1995年被列为成都市小城镇建设试点镇,同时被评为四川省文化先进乡镇,并首批被命名为成都市特色文化之乡,连续4年被列为国家级农业综合开发区。隆丰镇基础设施完备,初步形成了工业、农业和第三产业综合发展的格局,已由农业经济向城乡型经济发展。基于新农村建设的要求,基础配套设施的完善,新建污水处理站是必须的也是必备的。为改善该城镇及下游地区的环境质量,保障人民身体健康,建立污水处理厂是完全必要的,也是十分迫切的;该污水处理站将收集该镇八成以上的生活污水,处理后出水水质达到城镇污
3、水处理厂污染物排放标准(GB18918-2002)的一级B标,满足排水和环保的要求1。同时与农民居住区环境的改善和新农村建设的总体思路完全吻合。1.1设计任务及依据1.1.1设计任务12000 m3/d乡镇生活污水站初步设计。1.1.2设计依据及原则1.1.2.1 设计依据地表水环境质量标准(GB3838-2002)污水综合排放标准 (GB8978-1996)生活饮用水卫生标准 (GB5749-2006) 污水排入城市下水道水质标准 (CJ3082-1999) 城市污水处理厂污水污泥排放标准 (CJ3025-93)中华人民共和国环境保护法; 建设项目环境保护设计规定; 彭州市建设项目环境管理;
4、 水污染物排放限值(DB44/26-2001)中的一级标准;污水综合排排放标准(GB8978-1996)中的一级标准; 建筑给水排水设计规范(GBJ 15-88); 1.1.2.2 设计原则(1)选用运行安全可靠、经济合理的工艺流程。(2)采用先进的技术和设备,合理利用资金,提高污水处理站的自动化程度和管理水平。(3)根据基础设施统一规划、分步实施的方针,在方案设计中充分考虑远、近期结合,为发展留有余地。(4)污水处理厂的位置,应符合城市规划要求,位于城市下游,与周边有一定的卫生防护带,靠近受纳水体,少占农田。(5)严格执行国家和地方现行有关标准、规范和规定。1.1.3 设计范围本方案设计范围
5、为:通过对类似生活污水水质情况的综合分析,提出可行性方案,最终推荐最优方案;内容主要包括污水处理工艺流程、设备选型、污水构筑物及附属工程等进行综合规划设计。1.2 设计水量及水质1.2.1 设计人口根据统计,隆丰镇2005年人口共43000人,结合当地70/00的人口年增长速度,以等比数列推算法2预计到2020年人口总数达48000人左右。1.2.2 设计水量根据居民生活污水定额2145 L /(人d),设计水量平均总流量为6525m3/d,平均时流量272m3/h,即75 L/s。所以时变化系数Kz=1.7,小时最大流量Qmax=12000m3/d。1.2.3 设计水质根据本地城镇污水的原始
6、资料,和该污水处理厂出水直接排放到河流内,而该河流是饮用水源保护区,所以,处理出水应该达到城镇污水处理厂污染物排放标准(GB18918-2002)的一级B标。表1 设计水质BOD5CODcrSST-NNH3-NTP水温pH进水水质(mg/L)20035030040308高25低1269出水水质(mg/L)20602020151处理程度(%)9082.893.35050872处理工艺方案选择2.1工艺方案选择原则作为乡镇基础设施的重要组成部分和水污染控制的关键环节,乡镇污水处理厂工程的建设和运行意义重大。由于乡镇污水处理厂的建设和运行不但耗资较大,而且受多种因素的制约和影响,其中处理工艺方案的优
7、化选择对确保处理厂的运行性能和降低费用最为关键,因此有必要根据确定的标准和一般原则,从整体优化的观念出发,结合设计规模、污水水质特性以及当地的实际条件和要求,选择切实可行且经济合理的处理工艺方案,经全面技术经济比较后优选出最佳的总体工艺方案和实施方式3。在污水处理厂工艺方案确定中,将遵循以下原则:(1)技术成熟,处理效果稳定,保证出水水质达到国家规定的排放要求。(2)基建投资和运行费用低,以尽可能少的投入取得尽可能多的效益。(3)运行管理方便,运转灵活,并可根据不同的进水水质和出水水质要求调整运行方式和工艺参数,最大限度的发挥处理装置和处埋构筑物的处理能力。(4)选定工艺的技术及设备先进、可靠
8、。(5)便于实现工艺过程的自动控制,提高管理水平,降低劳动强度和人工费用。本工程要求的污水处理程度较高,对污水处理工艺选择应十分慎重。本方案设计的污水处理工艺选择针对该城镇污水量和污水水质以及经济条件考虑适应力强、调节灵活、低能耗、低投入、少占地和操作管理方便的成熟先进工艺4。下面将对各种工艺的特点进行论述,以便选择切实可行的方案。2.2污水处理工艺流程的确定2.2.1 厂址及地形资料XX镇污水处理站选址应综合考虑管网布置和现有人口分布特点,将其分别布置在龟背型场镇的两边。2.2.2气象及水文资料2.2.2.1水文地质资料该地区地处成都平原。地形复杂,有低山、丘陵和平原,多条河流直贯其中,地势
9、北高南低。2.2.2.2气象资料(1) 风向及风速:常风向为北风,最大风速1.2m/s;(2) 气温:月平均最高气温37.3,最低气温-2.72.2.3可行性方案的确定本项目污水处理的特点为: 污水以有机污染为主,BOD/COD=0.5,可生化性较好,重金属及其他难以生物降解的有毒物一般不超标; 污水中主要污染物指标BOD5、CODcr、SS值比国内一般城市污水高;针对以上特点,以及出水要求,现有城市污水处理技术的特点,以采用生化处理最为经济。生活污水的生物处理技术是以污水中含有的污染物作为营养源,利用微生物的代谢作用使污染物降解,它是生活污水处理的主要手段,是水资源可持续发展的重要保证5。根
10、据国内外已运行的大、中型污水处理厂的调查,要达到确定的治理目标,可采用:普通活性污泥法、氧化沟法、A/O工艺法、AB法、SBR法等等。a.普通活性污泥法方案普通活性污泥法,也称传统活性污泥法,推广年限长,具有成熟的设计及运行经验,处理效果可靠。自20世纪70年代以来,随着污水处理技术的发展,本方法在艺及设备等方面又有了很大改进。在工艺方面,通过增加工艺构筑物可以成为“A/O”或“A2/O”工艺,从面实现脱N和除P。在设备方面,开发了各种微孔曝气池,使氧转移效率提高到20%以上,从面节省了运行费用。国内已运行的大中型污水处理厂,如西安邓家村(12万m3/d)、天津纪庄子(26万m3/d)、北京高
11、碑店(50万m3/d)、成都三瓦窑(20万m3/d)普通活性污泥法如设计合理、运行管理得当,出水BOD5可达1020mg/L。它的缺点是工艺路线长,工艺构筑物及设备多而复杂,运行管理管理困难,基建投资及运行费均较高。国内已建的此类污水处理厂,单方基建投资一般为10001300元/(m3/d),运行费为0.20.4元/(m3/d)或更高。b.氧化沟方案氧化沟污水处理技术,是20世纪50年代由荷兰人首创。60年代以来,这项技术在欧洲、北美、南非、澳大利亚等国已被广泛采用,工艺及构造有了很大的发展和进步。随着对该技术缺点(占地面积大)的克服和对其优点(基建投资及运行费用相对较低,运行效果高且稳定,维
12、护管理简单等)的逐步深入认识,目前已成为普遍采用的一项污水处理技术。目前常用的几种商业性氧化沟有荷兰DHV公司60年代开发的Carrousel氧化沟,美国Envirex公司开发的Orbal氧化沟,丹麦Kruger公司发明的DE氧化沟等。在我国,氧化沟工艺是使用较多的工艺4。氧化沟工艺一般可不设初沉池,在不增加构筑物及设备的情况下,氧化沟内不仅可完成碳源的氧化,还可实现硝化和脱硝,成为A/O工艺;氧化沟前增加厌氧池可成为A2/O(A-A-O)工艺,实现除磷。由于氧化沟内活性污泥已经好氧稳定,可直接浓缩脱水,不必厌氧消化。氧化沟污水处理技术已被公认为一种较成功的革新的活性污泥法工艺,与传统活性污泥
13、系统相比,它在技术、经济等方面具有一系列独特的优点。 工艺流程简单、构筑物少,运行管理方便。一般情况下,氧化沟工艺可比传统活性污泥法少建初沉池和污泥厌氧消化系统,基建投资少。另外,由于不采用鼓风曝气的空气扩散器,不建厌氧消化系统,运行管理要方便。 处理效果稳定,出水水质好。实际运行效果表明,氧化沟在去除BOD5和SS方面均可取得比传统活性污泥法更高质量的出水,运行也更稳定可靠。同时,在不增加曝气池容积时,能方便地实现硝化和一定的反硝化处理,且只要适当扩大曝气池容积,能更方便地实现完全脱氮的深度处理。 基建投资省,运行费用低。实际运行证明,由于氧化沟工艺省去初沉池和污泥厌氧消化系统,且比较容易实
14、现硝化和反硝化,当处理要求脱氮时,氧化沟工艺在基建投资方面比传统活性污泥法节省很多(当只需去除BOD5时,可能节省不多)。同样,当仅要求去除BOD5时,对于大规模污水厂采用氧化沟工艺运行费用比传统活性污泥法略低或相当,而要求去除BOD5且去除NH3-N时,氧化沟工艺运行费用就比传统活性污泥法节省较多。 污泥量少,污泥性质稳定。由于氧化沟所采用的污泥龄一般长达2030d,污泥在沟内得到了好氧稳定,污泥生成量就少,因此使污泥后处理大大简化,节省处理厂运行费用,且便于管理。 具有一定承受水量、水质冲击负荷的能力。水流在氧化沟中流速为0.30.4m/s,氧化沟的总长为L,则水流完成一个循环所需时间t=
15、L/S,当L=90600m时,t=520min。由于废水在氧化沟中设计水力停留时间T为1024h,因此可计算出废水在整个停留时间内要完成的循环次数为30280次不等。可见原污水一进入氧化沟,就会被几十倍甚至上百倍的循环量所稀释,因此具有一定承受冲击负荷的能力。 占地面积少。由于氧化沟工艺所采用的污泥负荷较小、水力停留时间较长,使氧化沟容积会大于传统活性污泥法曝气池容积,占地面积可能会大些,但因为省去了初沉池和污泥厌氧消化池,占地面积总的来说会少于传统活性污泥法。c. A/O和A2/O法A/O工艺自被开发以来,就因为其特有的经济技术优势和环境效益,愈来愈受到人们的广泛重视.通常称为A/O工艺的实
16、际上可分为两类,一类是厌氧/好氧工艺,另一类是缺氧/好氧工艺.厌氧状态和缺氧状态之间存在着根本的差别:在厌氧状态下既有无分子态氧,也没有化合态氧,而在缺氧状态下则存在微量的分子态氧(DO浓度100100100一般一般一般需脱氮除磷的污水处理厂氧化沟9095100100稳定简便适应适用于中小型污水厂,需要脱氮除磷地区AB法8595100100约100一般简便适应适应可分期建设达到不同的要求SBR法90991001000.2 m3/d , 宜采用机械清渣3.1.2污水提升泵池 设计计算 设计流量:Q=301L/s,泵房工程结构按远期流量设计 泵房设计计算采用氧化沟工艺方案,污水处理系统简单,对于新
17、建污水处理厂,工艺管线可以充分优化,故污水只考虑一次提升。污水经提升后入平流沉砂池,然后自流通过厌氧池、氧化沟、二沉池及接触池,最后由出水管道排入关渠堰。根据最大流量设计,选用4台150QW-180-6-5.5潜污泵(3用1备)7,Q180m3/h,H=6m;采用高、中、低水位分别启动水泵,通过液位计来实现自动控制;出水管上设置管式流量计,对出水流量进行监测和控制。污水提升泵池尺寸:1000mm900mm1500mm数量:1座材质:钢筋混凝土构造:全地埋3.1.3平流式沉砂池 设计说明 污水经提升泵提升后进入平流沉砂池,共两组对称于提升泵房中轴线布置,每组分为两格4。每格宽度B1=0.65m沉
18、砂池池底采用多斗集砂,沉砂由螺旋离心泵自斗底抽送至高架砂水分离器,砂水分离通入压缩空气洗砂,污水回至提升泵前,净砂直接卸入自卸汽车外运。 设计流量为Qmax=464 m3/h=0.129 m3/s,设计水力停留时间t=30s,水平最大流速=0.25m/s,城市污水沉砂量X=30 m3/(106m3),清除沉砂的间隔时间T=2d。每格池平面面积为A=m2 沉砂池水流部分的长度(L) 式中: L沉砂池水流部分的长度,L; V曝气沉砂池有效容积,m3 ; t 设计水力停留时间t=40s则: m 池宽度 B B=nB1=20.65=1.3m 式中: B沉砂池总宽度; B1单个沉砂池宽度; n沉砂池个数
19、。 则: B=nB1=20.65=1.3m 有效水深 h2 h2=式中: h2有效水深; A池平面面积; B沉砂池总宽。则: h2= m 沉砂斗所需容积 (V) V =式中: V沉砂斗所需容积; Qmax最大设计流量,Qmax =0.129 m3/s; X城市污水沉砂量,m3/(106m3); T清除沉砂的间隔时间,d。 水流量变化系数, 取1.7。则: V= 池总高度 (H) H= h1+h2+h3式中:h1沉砂池超高,取0.3m; h2有效深度, h2=0.4m; h3沉砂室高度,取0.5m则: H= h1+ h2+ h3=0.3+0.4+0.5=1.2m3.1.4厌氧池a.设计参数设计流
20、量:最大日平均时流量为Qmax= 129L/s水力停留时间:T=2.5h污泥浓度:X=3000mg/L污泥回流液浓度:Xr=10000mg/L考虑到厌氧池与氧化沟为一个处理单元,总的水力停留时间超过15h,所以设计水量按最大日平均时考虑8。 b.设计计算 厌氧池容积:V= Q1 T=12910-32.53600=1161m3 厌氧池尺寸:水深取为h=4.0m。 则厌氧池面积:A= 厌氧池直径:D=m (取D=20m) 考虑0.3m的超高,故池总高为H=h+0.3=4+0.3=4.3m。 污泥回流量计算: 回流比计算 R = 污泥回流量QR =0.43129=55.47L/s=4792m3/d3
21、.1.5氧化沟3.1.5.1 设计参数(进水水质如表1所示)进水BOD5 =200mg/L 出水BOD5 =20mg/L进水NH3-N=30mg/L 出水NH3-N=15mg/L污泥负荷Ns=0.14 KgBOD5/(KgVSSd)污泥浓度MLVSS=5000mg/L污泥f=0.6,MLSS=3000mg/L。拟用卡罗塞(Carrousel)氧化沟,去除BOD5与COD之外,还具备硝化和一定的脱氮除磷作用,使出水NH3-N低于排放标准。氧化沟按设计分2座,按最大日平均时流量设计Qmax=11092 m3/d= 129 m3/s,每座氧化沟设计流量为Q1= 65L/s。总污泥龄:20dMLSS=
22、3600mg/L,MLVSS/MLSS=0.75 则MLSS=2700曝气池:DO2mg/LNOD=4.6mgO2/mgNH3-N氧化,可利用氧2.6mgO2/NO3-N还原0.9 0.98其他参数:a=0.6kgVSS/kgBOD5 b=0.07d-1脱氮速率:qdn=0.0312kgNO3-N/kgMLVSSdK1=0.23d-1 Ko2=1.3mg/L剩余碱度100mg/L(保持PH7.2):所需碱度7.1mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原硝化安全系数:2.5脱硝温度修正系数:1.083.1.5.2 设计计算.碱度平衡计算:出水处理水中非溶解性BOD
23、5值 BOD5f; BOD5f =0.7Ce1.42(1-e-0.235)式中:BOD5f出水处理水中非溶解性BOD5值,mg/L; Ce出水中BOD5的浓度,mg/L;则:BOD5f =0.7201.42(1- e-0.235)=13.6 mg/L则出水处理水中溶解性BOD5值,BOD5=20- BOD5f =6.4 mg/L.设采用污泥龄20d,日产污泥量 Xc Xc =式中:Q为氧化沟设计流量,11092 m3/d; 为污泥增长系数,取0.6 kg/kg; 污泥自身氧化率,取0.05 L/d; Lr为(L0-Le) 去除的BOD5浓度,mg/L; L0进水BOD5浓度,mg/L;Le出水
24、BOD5浓度,mg/L;污泥龄,d。则 Xc = kg/d根据一般情况,设其中有12.4为氮,近似等于总凯式氮(TKN)中用于合成部分9,即: 0.124644=79.8 kg/d 即:TKN中有 mg/L用于合成。 需用于氧化的NH3-N =34-7.19-2=24.81 mg/L 需用于还原的NO3-N =24.81-11.1=13.71 mg/L.碱度平衡计算一般去除BOD5所产生的碱度(以CaCO3计)约为0.1mg/L碱度去除1mgBOD5,设进水中碱度为250mg/L。所需碱度为7.1 mg碱度/mg NH3-N氧化,即 7.124.81=176.15 mg/L氮产生碱度3.0 m
25、g碱度/ mg NO3-N还原,即 3.013.71=41.1 mg/L计算所得的剩余碱度=250-176.15+41.1+0.1Lr=32.75+0.1193.6=133.9 mg/L 计算所得剩余碱度以CaCO3计,此值可使PH7.2 mg/L.硝化区容积计算:曝气池:DO2mg/L硝化所需的氧量NOD=4.6 mg/mg NH3-N氧化,可利用氧2.6 mg/mg /NO3-N还原0.9 0.98其他参数:a=0.6kgVSS/kgBOD5 b=0.07d-1脱氮速率: qdn=0.0312kgNO3-N/(kgMLVSSd)K=0.23d-1 Ko2=1.3mg/L剩余碱度100mg/
26、L(保持PH7.2):所需碱度7.1mg碱度/mgNH3-N氧化;产生碱度3.0mg碱度/mgNO3-N还原硝化安全系数:2.5脱硝温度修正系数:1.08 硝化速率为 =0.204 d-1 故泥龄: d 采用安全系数为2.5,故设计污泥龄为:2.54.9=12.5 d 原假定污泥龄为20d,则硝化速率为: L/d 单位基质利用率: kgBOD5/kgMLVSS.d 式中: a污泥增长系数,0.6; b污泥自身氧化率,0.051/d。在一般情况下,MLVSS与MLSS的比值是比较固定的,这里取为0.75 则: MLVSS=fMLSS=0.753600=2700 mg/L 所需的MLVSS总量=
27、硝化容积: m3 水力停留时间: h.反硝化区容积: 12时,反硝化速率为: 式中: F有机物降解量,即BOD5的浓度,mg/L M微生物量,mg/L; 脱硝温度修正系数,取 1.08 。 T温度,12。 则: =0.017kg NO3-N /kgMLVSS.d还原NO3-N的总量=kg/d 脱氮所需MLVSS=kg 脱氮所需池容: m3 水力停留时间: h.氧化沟的总容积: 总水力停留时间:t=tn+tdn=8.81+6.4=15.2h 总容积:V=Vn+Vdn=4074+2962.9=7036.9m3.氧化沟的尺寸: 氧化沟采用4廊道式卡鲁塞尔氧化沟,取池深3.5m,宽7m,则氧化沟总长:
28、 m。其中好氧段长度为,缺氧段长度为m。弯道处长度: 则单个直道长: (取54m) 故氧化沟总池长=54+7+14=75m,总池宽=74=28m(未计池壁厚)。需氧量计算: 采用如下经验公式计算: 氧量 式中:A经验系数,取0.5; 去除的BOD5浓度,mg/L; B经验系数,取0.1; Nr需要硝化的氧量,24.8111092103=275.2 kg/d 其中:第一项为合成污泥需氧量,第二项为活性污泥内源呼吸需氧量,第三项为硝化污泥需氧量,第四项为反硝化污泥需氧量。需要硝化的氧量:Nr=24.811109210-3=275.2 kg/dR02=0.511092(0.19-0.0064)+0.
29、140742.7+4.6275.2-2.6152=2988.95 kg/d=124.54 kg/h30时, 采用表面机械曝气时脱氮的充氧量为: 式中:经验系数,取0.8; 经验系数,取0.9 相对密度,取1.0; 20时水中溶解氧饱和度,取9.17 mg/L; 30时水中溶解氧饱和度,取7.63 mg/L; C混合液中溶解氧的浓度,取2mg/L; T温度,30。 则:= =231.4 kg/h查手册,选用DY325型倒伞型叶轮表面曝气机10,直径3.5m,电机功率N=55kW,单台每小时最大充氧能力为125kgO2/h,每座氧化沟所需数量为n,则 取n=2台回流污泥量: 可由公式求得。式中:X
30、MLSS=3.6g/L,回流污泥浓度,取10g/L。则: (50100,实际取60)考虑到回流至厌氧池的污泥为11%,则回流到氧化沟的污泥总量为49%Q。剩余污泥量: 如由池底排除,二沉池排泥浓度为10g/L,则每个氧化沟产泥量为: 3.1.5.3 氧化沟计算草草图如下:图3 氧化沟设计草图(1)图4 氧化沟设计草图(2)3.1.6 二沉池该沉淀池采用中心进水,周边出水的幅流式沉淀池,采用刮泥机11。3.1.6.1设计参数 设计进水量:Q=11092 m3/d=463.2 m3/h 表面负荷:qb范围为1.01.5 m3/ m2.h ,取q=1.0 m3/ m2.h 固体负荷:qs 一般范围为
31、120 =140 kg/ m2.d 水力停留时间(沉淀时间):T=2.5 h 堰负荷:取值范围为1.52.9L/s.m,取2.0 L/(s.m)3.1.6.2设计计算 沉淀池面积:按表面负荷算: m2 沉淀池直径: 沉淀部分有效水深为 h2 =qbT=1.02.5=2.5m4m 沉淀部分有效容积 V=1150m3 沉淀池底坡落差,设池底坡度 i=0.05 则: h4=im 沉淀池周边水深 其中缓冲层高度取h3=0.5 m 刮泥板高度取h5=0.5 m H0=h2+h3+h5=2.5+0.5+0.5=3.5mm 沉淀池总高度 H 设沉淀池超高h1=0.3m H=H0+h4+h1=3.5+0.51
32、+0.3=4.31m3.1.6.3 校核堰负荷: 径深比 堰负荷以上各项均符合要求3.1.6.4 辐流式二沉池计算草图如下:3.1.7 接触消毒池与加氯间 采用隔板式接触反应池10 3.1.7.1设计参数设计流量:Q=11092 m3/d =129 L/s(设一座)水力停留时间:T=0.5h=30min设计投氯量为:4.0mg/L平均水深:h=2.0m 隔板间隔:b=3.5m 3.1.7.2设计计算 接触池容积: V=QT=0.1293060=232m3 表面积A=m2 隔板数采用2个,则廊道总宽为B(2+1)3.510.5m 取11m 接触池长度 长宽比 实际消毒池容积为V=BLh=11112=242m3 池深取20.32.3m (0.3m为超高)经校核均满足有效停留时间的要求 加氯量计算: 设计最大加氯量为=4.0mg/L,每日投氯量为 Q=41109210-3=44.3kg/d=1.85kg/h 选用贮氯量为120kg的液氯钢瓶,每日加氯量为3/8瓶,