收藏 分销(赏)

消防系统运行可靠性的估计外文及翻译.doc

上传人:胜**** 文档编号:3123368 上传时间:2024-06-19 格式:DOC 页数:20 大小:270.50KB
下载 相关 举报
消防系统运行可靠性的估计外文及翻译.doc_第1页
第1页 / 共20页
消防系统运行可靠性的估计外文及翻译.doc_第2页
第2页 / 共20页
消防系统运行可靠性的估计外文及翻译.doc_第3页
第3页 / 共20页
消防系统运行可靠性的估计外文及翻译.doc_第4页
第4页 / 共20页
消防系统运行可靠性的估计外文及翻译.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、本科毕业设计外文文献及译文文献、资料题目:Estimates of the Operational Reliability of Fire Protection Systems文献、资料来源: 文献、资料发表(出版)日期: 院 (部): 市政与环境工程学院专 业: 给水排水工程班 级: 姓 名: 学 号: 指导教师: 翻译日期: 外文文献:Estimates of the Operational Reliability of Fire Protection SystemsFor the past three years,the National Institute of Standards a

2、nd Technology (NIST) has been working to develop a new encryption standard to keep government information secureThe organization is in the final stages of an open process of selecting one or more algorithms,or data-scrambling formulas,for the new Advanced Encryption Standard (AES) and plans to make

3、adecision by late summer or early fallThe standard is slated to go into effect next year Richard W. Bukowski, P.E. Senior Engineer MST Building and Fire Research Laboratory Gaithersburg, MD 20899-8642 USA Edward K. Budnick, P.E., and Christopher F. Scheme1 Vice President Chemical Engineer Hughes Ass

4、ociates, Inc Hughes Associates, Inc. Baltimore, MD 21227-1652USA Baltimore, MD 2 1227-1652USA INTRODUCTION Background Fire protection strategies are designed and installed to perform specific functions. For example, a fire sprinkler system is expected to control or extinguish fires: To accomplish th

5、is, the system sprinklers must open, and the required amount of water to achieve control or extinguishment must be delivered to the fire location. A fire detection system is intended to provide sufficient early warning of a fireto permit occupant notification and escape, fire servicenotification, an

6、d in some cases activation of other fire protection features (e.g., special extinguishing systems, smoke management systems). Both system activation (detection) and notification (alarm) must occur to achieve early warning. Construction compartmentation is generally designed to limit the extent of fi

7、re spread as well as to maintain the buildings structural integrity as well as tenability along escape routes for some specified period of time. In order to accomplish this, the construction features must be fire “rated” (based on standard tests) and the integrity of the features maintained. The rel

8、iability of individual fire protection strategies such as detection, automatic suppression, and construction compartmentation is important input to detailed engineering analyses associated with performance based design. In the context of safety systems, there are several elements of reliability, inc

9、luding both operational andperfornzance reliability. Operational reliability provides a measure of the probability that a fire protection system will operate as intended when needed. Performance reliability is a measure of the adequacy of the feature to successfully perform its intended hnction unde

10、r specific fire exposure conditions. The former is a measure of component or system operability while the latter is a measure of the adequacy of the system design. The scope of this study was limited to evaluation of operational reliability due primarily to the form of the reported data in the liter

11、ature. In addition to this distinction between operational and performance reliability, the scope focused on unconditional estimates of reliability and failure estimates in terms offail-dangerous outcomes. A discussion of these terms is provided later in the paper. Scop This paper provides a review

12、of reported operational reliability and performance estimates for (1) fire detection, (2) automatic suppression, and to a limited extent (3) construction compartmentation. In general, the reported estimates for fire detection are largely for smoke detectiodfire alarm systems; automatic sprinklers co

13、mprise most of the data for automatic suppression, and compartmentation includes compartment fire resistance and enclosure integrity. It should be noted that in some cases the literature did not delineate beyond the general categories of “fire detection” or “automatic suppression,” requiring assumpt

14、ions regarding the specific type of fire protection system. Several studies reported estimates of reliability for both fire detection and automatic sprinkler system strategies. However, very little information was found detailing reliability estimates for passive fire protection strategies such as c

15、ompartmentation. A limited statistical based analysis was performed to provide generalized information on the ranges of such estimates and related uncertainties. This latter effort was limited to evaluation of reported data on detection and suppression. Insufficient data were identified on compartme

16、ntation reliability to be included. This paper addresses elements of reliability as they relate to fire safety systems. The literature search that was performed for this analysis is reviewed and important findings and data summarized. The data found in the literature that were applicable to sprinkle

17、r and smoke detection systems reliability were analyzed, with descriptive estimates of the mean values and 95 percent confidence intervals for the operational reliability of these in situ systems reported. ELEMENTS OF RELIABILITY ANALYSIS There is considerabIe variation in reliability data and assoc

18、iated anaIysesreported in the literature. Basically, reliability is an estimate of the probability that a system or component will operate as designed over some time period. During the useful or expected life of a component, this time period is “reset” each time a component is tested and found to be

19、 in working order. Therefore, the more often systems and components are tested and maintained, the more reliable they are. This form of reliability is referred to as unconditional. Unconditional reliability is an estimate of the probability that a system will operate “on demand.” A conditional relia

20、bility is an estimate that two events of concern, i.e., a fire and successful operation of a fire safety system occur at the same time. Reliability estimates that do not consider a fire event probability are unconditional estimates. Two other important concepts applied to operational reliability are

21、fuiled-safe andfailed- dangerous. when a fire safety system fails safe, it operates when no fire event has occurred. A common example is the false alarming of a smoke detector. A fire safety system fails dangerous when it does not function during a fire event. In this study, thefailed-dangerous even

22、t defines the Operational probability of failure (1-reliability estimate). A sprinkler system not operating during a fire event or an operating system that does not control or extinguish a fire are examples of this type of failure. The overall reliability of a system depends on the reliability of in

23、dividual components and their corresponding failure rates, the interdependencies of the individual components that compose the system, and the maintenance and testing of components and systems once installed to veri operability. All of these factors are of concern in estimating operationaz reliabili

24、ty. Fire safety system performance is also of concern when dealing with the overall concept of reliability. System performance is defined as the ability of a particular system to accomplish the task for which it was designed and installed. For example, the performance of a fire rated separation is b

25、ased on the construction components ability to remain intact and provide fire separation during a fire. The degree to which these components prevent fire spread across their intended boundaries defines system performance. Performance reliability estimates require data on how well systems accomplish

26、their design task under actual fire events or full scale tests. Information on performance reliability could not be discerned directly from many of the data sources reviewed as part of this effort due to the form of the presented data, and therefore, it is not addressed as a separate effect. The cau

27、se of failure for any type of system is typically classified into several general categories: installation errors, design mistakes, manufacturing/equipment defects, lack of maintenance, exceeding design limits, and environmental factors. There are several approaches that can be utilized to minimize

28、the probability of failure. Such methods include (1) design redundancy, (2) active monitoring for faults, (3) providing the simplest system (i.e., the least number of components) to address the hazard, and (4)a well designed inspection, testing, and maintenance program. These reliability engineering

29、 concepts are important when evaluating reliability estimates reported in the literature. Depending on the data used in a given analysis, the reliability estimate may relate to one or more of the concepts presented above. The literature review conducted under the scope of this effort addresses these

30、 concepts where appropriate. Most of the information that was obtained from the literature in support of this paper were reported in terms of unconditional operationaZ reliability, i.e., in terms of the probability that a fire protection strategy will not faiZ dangerous. LITERATURE REVIEW A literatu

31、re search was conducted to gather reliability data of all types for fire safety systems relevant to the protection strategies considered: automatic suppression, automatic detection, and compartmentation. The objective of the literature search was to obtain system-specific reliability estimates for t

32、he performance of each type of fire safety system as a function of generic occupancy type (e.g., residential, commercial, and institutional). Sources of information included national fire incident database reports, US Department of Defense safety records, industry and occupancy specific studies, ins

33、urance industry historical records and inspection reports documented in the open literature, and experimental data. Reports on experimental work and fire testing results were utilized only when fire detection, automatic suppression, or compartmentation strategies were explicitly evaluated. Tests of

34、systems used for qualification, approval, or listing were also reviewed for information on failure modes. Published data from the United Kingdom, Japan, Australia, and New Zealand were included. General Studies Several broad based studies were identified that reported reliability estimates for fire

35、detection and fire suppression systems as well as construction compartmentation. These included (1) the Warrington Fire Research study 1996 in the United Kingdom, (2) the Australian Fire Engineering Guidelines Fire Code Reform Center, 19961,(3) a compilation of fire statistics for Tokyo, Japan Tokyo

36、Fire Department, 19971,and (4)results from a study of in situ performance of fire protection systems in Japan Watanabe, 19791. The Warrington Fire Research study addressed the reliability of fire safety systems and the interaction of their components. A Delphi methodology was used to develop discret

37、e estimates of the reliability of detection and alarm systems, fire suppression systems, automatic smoke control systems, and passive fire protection (e.g., compartmentation). The Australian Fire Engineering Guidelines were developed as the engineering code of practice supporting the new performance

38、-based Building Code of Australia. Following the methods in this guide, building fire safety performance is evaluated for smouldering, flaming non-flashover, and flaming flashover fires. The performance (ie., probability of detecting, extinguishing or controlling a fire event) of fire safety systems

39、 is predicted, accounting explicitly for the operational reliability of the particular system. Reliability estimates from an expert panel rather than from actual data are provided in the Guideline for this purpose. Finally, operational reliability data were reported in two separate studies in Japan.

40、 One study involved evaluation of fire incident reports from the city of Tokyo during the period from 1990 to 1997 TokyoFire Department 19971. The other study involved review of fire incident reports throughout Japan during an earlier time period ending in 1978 Watanabe 19791. Table 1provides a summ

41、ary of the reliability estimatesprovided in these studies. Significant differences exist in the individual reliability estimates depending on the parameters used to develop these estimates. Depending on the required accuracy in predicting future operational performance of fire protection systems, de

42、pendence on the range of estimates from these studies could significantly alter the results. In addition, the uncertainty associated with a single estimate of reliability or the existence of potentially important biases in the methods used to derive these estimates may limit their direct usefulness

43、in addressing either operational or performance reliability of fire protection systems. Table 1. Published Estimates for Fire Protection Systems Operational Reliability (Probability of Success (YO) NA= Not Addressed Review of Available Reliability Data Due to the limited applicability of the reliabi

44、lity estimates published in the general literature, the literature review was extended in an effort to (1) develop an improved understanding of the elements of each of the three strategies under consideration that influence reliability, and (2) identify and evaluate quantitative data regarding indiv

45、idual system operability and failure rates. Automatic Suppression Systems (i.e., sprinkler systems) Table 2 provides a summary of reported operational reliability estimates from several studies that evaluated actual fire incidents in which automatic sprinklers were present. As a group, these studies

46、 vary significantly in terms of the reporting time periods, the types of occupancies, and the level of detail regarding the types of fires and the sprinkler system design. The estimates presented in Table 2 generally indicate relatively high operational reliability for automatic sprinkler systems. While some of the references include fire “control” or “extinguishment” as part of the reliability assessment, the reported data were not consistent. Therefore, operational reliability was assumed to be limited to sprin

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 考试专区 > 中考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服