ImageVerifierCode 换一换
格式:DOC , 页数:20 ,大小:270.50KB ,
资源ID:3123368      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3123368.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     索取发票    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【胜****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【胜****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(消防系统运行可靠性的估计外文及翻译.doc)为本站上传会员【胜****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

消防系统运行可靠性的估计外文及翻译.doc

1、本科毕业设计外文文献及译文文献、资料题目:Estimates of the Operational Reliability of Fire Protection Systems文献、资料来源: 文献、资料发表(出版)日期: 院 (部): 市政与环境工程学院专 业: 给水排水工程班 级: 姓 名: 学 号: 指导教师: 翻译日期: 外文文献:Estimates of the Operational Reliability of Fire Protection SystemsFor the past three years,the National Institute of Standards a

2、nd Technology (NIST) has been working to develop a new encryption standard to keep government information secureThe organization is in the final stages of an open process of selecting one or more algorithms,or data-scrambling formulas,for the new Advanced Encryption Standard (AES) and plans to make

3、adecision by late summer or early fallThe standard is slated to go into effect next year Richard W. Bukowski, P.E. Senior Engineer MST Building and Fire Research Laboratory Gaithersburg, MD 20899-8642 USA Edward K. Budnick, P.E., and Christopher F. Scheme1 Vice President Chemical Engineer Hughes Ass

4、ociates, Inc Hughes Associates, Inc. Baltimore, MD 21227-1652USA Baltimore, MD 2 1227-1652USA INTRODUCTION Background Fire protection strategies are designed and installed to perform specific functions. For example, a fire sprinkler system is expected to control or extinguish fires: To accomplish th

5、is, the system sprinklers must open, and the required amount of water to achieve control or extinguishment must be delivered to the fire location. A fire detection system is intended to provide sufficient early warning of a fireto permit occupant notification and escape, fire servicenotification, an

6、d in some cases activation of other fire protection features (e.g., special extinguishing systems, smoke management systems). Both system activation (detection) and notification (alarm) must occur to achieve early warning. Construction compartmentation is generally designed to limit the extent of fi

7、re spread as well as to maintain the buildings structural integrity as well as tenability along escape routes for some specified period of time. In order to accomplish this, the construction features must be fire “rated” (based on standard tests) and the integrity of the features maintained. The rel

8、iability of individual fire protection strategies such as detection, automatic suppression, and construction compartmentation is important input to detailed engineering analyses associated with performance based design. In the context of safety systems, there are several elements of reliability, inc

9、luding both operational andperfornzance reliability. Operational reliability provides a measure of the probability that a fire protection system will operate as intended when needed. Performance reliability is a measure of the adequacy of the feature to successfully perform its intended hnction unde

10、r specific fire exposure conditions. The former is a measure of component or system operability while the latter is a measure of the adequacy of the system design. The scope of this study was limited to evaluation of operational reliability due primarily to the form of the reported data in the liter

11、ature. In addition to this distinction between operational and performance reliability, the scope focused on unconditional estimates of reliability and failure estimates in terms offail-dangerous outcomes. A discussion of these terms is provided later in the paper. Scop This paper provides a review

12、of reported operational reliability and performance estimates for (1) fire detection, (2) automatic suppression, and to a limited extent (3) construction compartmentation. In general, the reported estimates for fire detection are largely for smoke detectiodfire alarm systems; automatic sprinklers co

13、mprise most of the data for automatic suppression, and compartmentation includes compartment fire resistance and enclosure integrity. It should be noted that in some cases the literature did not delineate beyond the general categories of “fire detection” or “automatic suppression,” requiring assumpt

14、ions regarding the specific type of fire protection system. Several studies reported estimates of reliability for both fire detection and automatic sprinkler system strategies. However, very little information was found detailing reliability estimates for passive fire protection strategies such as c

15、ompartmentation. A limited statistical based analysis was performed to provide generalized information on the ranges of such estimates and related uncertainties. This latter effort was limited to evaluation of reported data on detection and suppression. Insufficient data were identified on compartme

16、ntation reliability to be included. This paper addresses elements of reliability as they relate to fire safety systems. The literature search that was performed for this analysis is reviewed and important findings and data summarized. The data found in the literature that were applicable to sprinkle

17、r and smoke detection systems reliability were analyzed, with descriptive estimates of the mean values and 95 percent confidence intervals for the operational reliability of these in situ systems reported. ELEMENTS OF RELIABILITY ANALYSIS There is considerabIe variation in reliability data and assoc

18、iated anaIysesreported in the literature. Basically, reliability is an estimate of the probability that a system or component will operate as designed over some time period. During the useful or expected life of a component, this time period is “reset” each time a component is tested and found to be

19、 in working order. Therefore, the more often systems and components are tested and maintained, the more reliable they are. This form of reliability is referred to as unconditional. Unconditional reliability is an estimate of the probability that a system will operate “on demand.” A conditional relia

20、bility is an estimate that two events of concern, i.e., a fire and successful operation of a fire safety system occur at the same time. Reliability estimates that do not consider a fire event probability are unconditional estimates. Two other important concepts applied to operational reliability are

21、fuiled-safe andfailed- dangerous. when a fire safety system fails safe, it operates when no fire event has occurred. A common example is the false alarming of a smoke detector. A fire safety system fails dangerous when it does not function during a fire event. In this study, thefailed-dangerous even

22、t defines the Operational probability of failure (1-reliability estimate). A sprinkler system not operating during a fire event or an operating system that does not control or extinguish a fire are examples of this type of failure. The overall reliability of a system depends on the reliability of in

23、dividual components and their corresponding failure rates, the interdependencies of the individual components that compose the system, and the maintenance and testing of components and systems once installed to veri operability. All of these factors are of concern in estimating operationaz reliabili

24、ty. Fire safety system performance is also of concern when dealing with the overall concept of reliability. System performance is defined as the ability of a particular system to accomplish the task for which it was designed and installed. For example, the performance of a fire rated separation is b

25、ased on the construction components ability to remain intact and provide fire separation during a fire. The degree to which these components prevent fire spread across their intended boundaries defines system performance. Performance reliability estimates require data on how well systems accomplish

26、their design task under actual fire events or full scale tests. Information on performance reliability could not be discerned directly from many of the data sources reviewed as part of this effort due to the form of the presented data, and therefore, it is not addressed as a separate effect. The cau

27、se of failure for any type of system is typically classified into several general categories: installation errors, design mistakes, manufacturing/equipment defects, lack of maintenance, exceeding design limits, and environmental factors. There are several approaches that can be utilized to minimize

28、the probability of failure. Such methods include (1) design redundancy, (2) active monitoring for faults, (3) providing the simplest system (i.e., the least number of components) to address the hazard, and (4)a well designed inspection, testing, and maintenance program. These reliability engineering

29、 concepts are important when evaluating reliability estimates reported in the literature. Depending on the data used in a given analysis, the reliability estimate may relate to one or more of the concepts presented above. The literature review conducted under the scope of this effort addresses these

30、 concepts where appropriate. Most of the information that was obtained from the literature in support of this paper were reported in terms of unconditional operationaZ reliability, i.e., in terms of the probability that a fire protection strategy will not faiZ dangerous. LITERATURE REVIEW A literatu

31、re search was conducted to gather reliability data of all types for fire safety systems relevant to the protection strategies considered: automatic suppression, automatic detection, and compartmentation. The objective of the literature search was to obtain system-specific reliability estimates for t

32、he performance of each type of fire safety system as a function of generic occupancy type (e.g., residential, commercial, and institutional). Sources of information included national fire incident database reports, US Department of Defense safety records, industry and occupancy specific studies, ins

33、urance industry historical records and inspection reports documented in the open literature, and experimental data. Reports on experimental work and fire testing results were utilized only when fire detection, automatic suppression, or compartmentation strategies were explicitly evaluated. Tests of

34、systems used for qualification, approval, or listing were also reviewed for information on failure modes. Published data from the United Kingdom, Japan, Australia, and New Zealand were included. General Studies Several broad based studies were identified that reported reliability estimates for fire

35、detection and fire suppression systems as well as construction compartmentation. These included (1) the Warrington Fire Research study 1996 in the United Kingdom, (2) the Australian Fire Engineering Guidelines Fire Code Reform Center, 19961,(3) a compilation of fire statistics for Tokyo, Japan Tokyo

36、Fire Department, 19971,and (4)results from a study of in situ performance of fire protection systems in Japan Watanabe, 19791. The Warrington Fire Research study addressed the reliability of fire safety systems and the interaction of their components. A Delphi methodology was used to develop discret

37、e estimates of the reliability of detection and alarm systems, fire suppression systems, automatic smoke control systems, and passive fire protection (e.g., compartmentation). The Australian Fire Engineering Guidelines were developed as the engineering code of practice supporting the new performance

38、-based Building Code of Australia. Following the methods in this guide, building fire safety performance is evaluated for smouldering, flaming non-flashover, and flaming flashover fires. The performance (ie., probability of detecting, extinguishing or controlling a fire event) of fire safety systems

39、 is predicted, accounting explicitly for the operational reliability of the particular system. Reliability estimates from an expert panel rather than from actual data are provided in the Guideline for this purpose. Finally, operational reliability data were reported in two separate studies in Japan.

40、 One study involved evaluation of fire incident reports from the city of Tokyo during the period from 1990 to 1997 TokyoFire Department 19971. The other study involved review of fire incident reports throughout Japan during an earlier time period ending in 1978 Watanabe 19791. Table 1provides a summ

41、ary of the reliability estimatesprovided in these studies. Significant differences exist in the individual reliability estimates depending on the parameters used to develop these estimates. Depending on the required accuracy in predicting future operational performance of fire protection systems, de

42、pendence on the range of estimates from these studies could significantly alter the results. In addition, the uncertainty associated with a single estimate of reliability or the existence of potentially important biases in the methods used to derive these estimates may limit their direct usefulness

43、in addressing either operational or performance reliability of fire protection systems. Table 1. Published Estimates for Fire Protection Systems Operational Reliability (Probability of Success (YO) NA= Not Addressed Review of Available Reliability Data Due to the limited applicability of the reliabi

44、lity estimates published in the general literature, the literature review was extended in an effort to (1) develop an improved understanding of the elements of each of the three strategies under consideration that influence reliability, and (2) identify and evaluate quantitative data regarding indiv

45、idual system operability and failure rates. Automatic Suppression Systems (i.e., sprinkler systems) Table 2 provides a summary of reported operational reliability estimates from several studies that evaluated actual fire incidents in which automatic sprinklers were present. As a group, these studies

46、 vary significantly in terms of the reporting time periods, the types of occupancies, and the level of detail regarding the types of fires and the sprinkler system design. The estimates presented in Table 2 generally indicate relatively high operational reliability for automatic sprinkler systems. While some of the references include fire “control” or “extinguishment” as part of the reliability assessment, the reported data were not consistent. Therefore, operational reliability was assumed to be limited to sprin

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服