1、求异面直线所成的角祁正红 求异面直线所成的角,一般有两种方法,一种是几何法,这是高二数学人教版(A)版本倡导的传统的方法,其基本解题思路是“异面化共面,认定再计算”,即利用平移法和补形法将两条异面直线转化到同一个三角形中,结合余弦定理来求。还有一种方法是向量法,即建立空间直角坐标系,利用向量的代数法和几何法求解,这是高二数学人教版(B)倡导的方法,下面举例说明两种方法的应用。 例:长方体ABCDA1B1C1D1中,AB=AA1=2cm,AD=1cm,求异面直线A1C1与BD1所成的角。 解法1:平移法 设A1C1与B1D1交于O,取B1B中点E,连接OE,因为OE/D1B,所以C1OE或其补角
2、就是异面直线A1C1与BD1所成的角C1OE中 所以异面直线所成的角为图1 解法2:补形法 在长方体ABCDA1B1C1D1的面BC1上补上一个同样大小的长方体,将AC平移到BE,则D1BE或其补角就是异面直线A1C1与BD1所成的角,在BD1E中,BD1=3, 所以异面直线A1C1与BD1所成的角为图2 解法3:利用公式 设OA是平面的一条斜线,OB是OA在内的射影,OC是平面内过O的任意一条直线,设OA与OC、OA与OB、OB与OC所成的角分别是、1、2,则(注:在上述题设条件中,把平面内的OC换成平面内不经过O点的任意一条直线,则上述结论同样成立)D1B在平面ABCD内射影是BD,AC看
3、作是底面ABCD内不经过B点的一条直线,BD与AC所成的角为AOD,D1B与BD所成角为D1BD,设D1B与AC所成角为,。 所以 所以异面直线A1C1与BD1所成的角为图3 解法4:向量几何法: 设为空间一组基向量 所以异面直线A1C1与BD1所成的角为图4 解法5:向量代数法: 以D为坐标原点,DC、DA、DD1分别为x、y、z轴,建立空间直角坐标系,则A(0,1,0)、C(2,0,0),B(2,1,0)、D1(0,0,2), 所以异面直线A1C1与BD1所成的角为图5 解法6:利用公式 定理:四面体ABCD两相对棱AC、BD间的夹角必满足图6解:连结BC1、A1B在四面体中,异面直线A1C1与BD1所成的角是,易求得图7由定理得: 所以