资源描述
第一讲 有 理 数
一、有理数的概念及分类。
二、有理数的计算:
1、 善于观察数字特征;2、灵活运用运算法则;3、掌握常用运算技巧(凑整法、分拆法等)。
三、例题示范
1、数轴与大小
例1、 已知数轴上有A、B两点,A、B之间的距离为1,点A与原点O的距离为3,那么满足条件的点B与原点O的距离之和等于多少?满足条件的点B有多少个?
例2、 将这四个数按由小到大的顺序,用“<”连结起来。
提示1:四个数都加上1不改变大小顺序;
提示2:先考虑其相反数的大小顺序;
提示3:考虑其倒数的大小顺序。
例3、 观察图中的数轴,用字母a、b、c依次表示点A、B、C对应的数。试确定三个数的大小关系。
分析:由点B在A右边,知b-a>0,而A、B都在原点左边,故ab>0,又c>1>0,故要比较的大小关系,只要比较分母的大小关系。
例4、 在有理数a与b(b>a)之间找出无数个有理数。
提示:P=(n为大于是 的自然数)
注:P的表示方法不是唯一的。
2、 符号和括号
在代数运算中,添上(或去掉)括号可以改变运算的次序,从而使复杂的问题变得简单。
例5、 在数1、2、3、…、1990前添上“+”和“ —”并依次运算,所得可能的最小非负数是多少?
提示:造零:n-(n+1)-(n+2)+(n+3)=0
注:造零的基本技巧:两个相反数的代数和为零。
3、算对与算巧
例6、 计算 -1-2-3-…-2000-2001-2002
提示:1、逆序相加法。2、求和公式:S=(首项+末项)´项数¸2。
例7、 计算 1+2-3-4+5+6-7-8+9+…-2000+2001+2002
提示:仿例5,造零。结论:2003。
例8、 计算
提示1:凑整法,并运用技巧:199…9=10n+99…9,99…9=10n -1。
例9、 计算
提示:字母代数,整体化:令,则
例10、 计算
(1);(2)
提示:裂项相消。
常用裂项关系式:
(1); (2);
(3); (4)。
例11 计算 (n为自然数)
例12、计算 1+2+22+23+…+22000
提示:1、裂项相消:2n=2n+1-2n;2、错项相减:令S=1+2+22+23+…+22000,则S=2S-S=22001-1。
例13、比较 与2的大小。
提示:错项相减:计算。
第二讲 绝 对 值
一、 知识要点
1、 绝对值的代数意义;
2、 绝对值的几何意义: (1)|a|、(2)|a-b|;
3、 绝对值的性质:
(1)|-a|=|a|, |a|³0 , |a|³a; (2)|a|2=|a2|=a2;
(3)|ab|=|a||b|; (4)(b¹0);
4、绝对值方程:
(1) 最简单的绝对值方程|x|=a的解:
(2)解题方法:换元法,分类讨论法。
二、绝对值问题解题关键:
(1)去掉绝对值符号; (2)运用性质; (3)分类讨论。
三、例题示范
例1 已知a<0,化简|2a-|a||。
提示:多重绝对值符号的处理,从内向外逐步化简。
例2 已知|a|=5,|b|=3,且|a-b|=b-a,则a+b= ,满足条件的a有几个?
例3 已知a、b、c在数轴上表示的数如图,化简:|b+c|-|b-a|-|a-c|-|c-b|+|b|+|-2a|。
例4 已知a、b、c是有理数,且a+b+c=0,abc>0,求的值。
注:对于轮换对称式,可通过假设使问题简化。
例5 已知:
例6 已知,化简:m=|x+1|-|x+2|+|x+3|-|x+4|。
例7 已知|x+5|+|x-2|=7,求x的取值范围。
提示:1、根轴法;2、几何法。
例8 是否存在数x,使|x+3|-|x-2|>7。
提示:1、根轴法;2、几何法。
例9 m为有理数,求|m-2|+|m-4|+|m-6|+|m-8|的最小值。
提示:结合几何图形,就m所处的四种位置讨论。
结论:最小值为8。
例10(北京市1989年高一数学竞赛题)设x是实数,
且f(x)=|x+1|+|x+2|+|x+3|+|x+4|+|x+5|.则f(x)的最小值等于___6_______.
例11 (1986年扬州初一竞赛题)设T=|x-p|+|x-15|+|x-p-15|,其中0<p<15.对于满足p≤x≤15的x的来说,T的最小值是多少?
解 由已知条件可得:T=(x-p)+(15-x)+(p+15-x)=30-x.
∵当p≤x≤15时,上式中在x取最大值时T最小;当x=15时,T=30-15=15,故T的最小值是15.
例12 若两数绝对值之和等于绝对值之积,且这两数都不等于0.试证这两个数都不在-1与-之间.
证 设两数为a、b,则|a|+|b|=|a||b|.
∴|b|=|a||b|-|a|=|a|(|b|-1).
∵ab≠0,∴|a|>0,|b|>0. ∴|b|-1=>0,∴|b|>1.
同理可证|a|>1. ∴a、b都不在-1与1之间.
例13 某城镇沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15、7、11、3、14台,现在为使各校电脑数相等,各调几台给邻校:一小给二小、二小给三小、三小给四小、四小给五小、五小给一小。若甲小给乙小-3台,即为乙小给甲小三台,要使电脑移动的总台数最少,应怎样安排?
例14 解方程
(1)|3x-1|=8 (2) ||x-2|-1|=
(3)|3x-2|=x+4 (4)|x-1|+|x-2|+|x+3|=6.
例15(1973年加拿大中学生竞赛题)求满足|x+3|-|x-1|=x+1的一切实数解.
分析 解绝对值方程的关键是去绝对值符号,令x+3=0,x-1=0,分别得x=-3,x=1,-3,1将全部实数分成3段:x<-3或-3≤x<1或x≥1,然后在每一段上去绝对值符号解方程,例如,当x<-3时,|x+3|=-x-3,|x-1|=1-x,故方程化为-x-3+x-1=x+1,∴x=-5,x=-5满足x<-3,故是原方程的一个解,求出每一段上的解,将它们合并,便得到原方程的全部解,这种方法叫做“零点”分段法,x=-3,x=1叫做零点.
第三讲 一次方程(组)
一、基础知识
1、方程的定义:含有未知数的等式。
2、一元一次方程:含有一个未知数并且未知数的最高次数为一次的整式方程。
3、方程的解(根):使方程左右两边的值相等的未知数的值。
4、 字母系数的一元一次方程:ax=b。
其解的情况:
5、 一次方程组:由两个或两个以上的一次方程联立在一起的联产方程。常见的是二元一次方程组,三元一次方程组。
6、 方程式组的解:适合方程组中每一个方程的未知数的值。
7、解方程组的基本思想:消元(加减消元法、代入消元法)。
二、例题示范
例1、 解方程
例2、 关于x的方程中,a,b为定值,无论k为何值时,方程的解总是1,求a、b的值。
提示:用赋值法,对k赋以某一值后求之。
例3、(第36届美国中学数学竞赛题)设a,a'b,b'是实数,且a和a'不为零,如果方程ax+b=0的解小于a/x+b'=0的解,求a,a'b,b'应满足的条件。
例4 解关于x的方程.
提示:整理成字母系数方程的一般形式,再就a进行讨论
例5 k为何值时,方程9x-3=kx+14有正整数解?并求出正整数解。
提示:整理成字母系数方程的一般形式,再就k进行讨论。
例6(1982年天津初中数学竞赛题)已知关于x,y的二元一次方程(a-1)x+(a+2)y+5-2a=0,当a每取一个值时就有一个方程,而这些方程有一个公共解,你能求出这个公共解,并证明对任何a值它都能使方程成立吗?
分析 依题意,即要证明存在一组与a无关的x,y的值,使等式(a-1)x+(a+2)y+5-2a=0恒成立,令a取两个特殊值(如a=1或a=-2),可得两个方程,解由这两个方程构成的方程组得到一组解,再代入原方程验证,如满足方程则命题获证,
本例的另一典型解法
例7(1989年上海初一试题),方程
并且abc≠0,那么x____
提示:1、去分母求解;2、将3改写为。
例8(第4届美国数学邀请赛试题)若x1,x2,x3,x4和x5满足下列方程组:
确定3x4+2x5的值.
说明:整体代换方法是一种重要的解题策略.
例9 解方程组
提示:仿例8,注意就m讨论。
例10 如果方程组(1)的解是方程2x-y=4(2)的解,求m的值。
提示:1、从(1)中解出x,y用m表示,再代入(2)求m ;
2、在(1)中用消元法消去m再与(2)联立求出x,y,再代入(1)求m。
例11 如果方程ax+by+cz=d对一切x,y,z都成立,求a,b,c,d的值。
提示:赋值法。
例12 解方程组。
提示:引进新未知数
第四讲 列方程(组)解应用题
一、知识要点
1、 列方程解应用题的一般步骤:审题、设未知元、列解方程、检验、作结论等.
2、 列方程解应用题要领:
(1) 善于将生活语言代数化;
(2) 掌握一定的设元技巧(直接设元,间接设元,辅助设元);
(3) 善于寻找数量间的等量关系。
二、例题示范
1、合理设立未知元
例1一群男女学生若干人,如果女生走了15人,则余下的男女生比例为2:1,在此之后,男生又走了45 人,于是男女生的比例为1:5,求原来男生有多少人?
提示:(1)直接设元
(2)列方程组:
例2 在三点和四点之间,时钟上的分针和时针在什么时候重合?
例3甲、乙、丙、丁四个孩子共有45本书,如果甲减2本,乙加2本,丙增加一倍,丁减少一半,则四个孩子的书就一样多,问每个孩子原来各有多少本书?
提示:(1)设四个孩子的书一样多时每人有x本书,列方程;
(2)设甲、乙、丙、丁四个孩子原来各有x,y,z,t本书,列方程组:
例4 (1986年扬州市初一数学竞赛题)A、B、C三人各有豆若干粒,要求互相赠送,先由A给B、C,所给的豆数等于B、C原来各有的豆数,依同法再由B给A、C现有豆数,后由C给A、B现有豆数,互送后每人恰好各有64粒,问原来三人各有豆多少粒?
提示:用列表法分析数量关系。
例5 如果某一年的5月份中,有五个星期五,它们的日期之和为80,求这一年的5月4日是星期几?
提示:间接设元.设第一个星期五的日期为x,
例6 甲、乙两人分别从A、B两地相向匀速前进,第一次相遇在距A点700米处,然后继续前进,甲到B地,乙到A地后都立即返回,第二次相遇在距B点400米处,求A、B两地间的距离是多少米?
提示:直接设元。
例7 某商场经销一种商品,由于进货时价格比原来降低了6.4%,使得利润率增加了8个百分点,求经销这种商品原来的利润率。
提示:商品进价、商品售价、商品利润率之间的关系为:
商品利润率=[(商品售价—商品进价)¸商品进价]´100%。
例8 (1983年青岛市初中数学竞赛题)某人骑自行车从A地先以每小时12千米的速度下坡后,以每小时9千米的速度走平路到B地,共用55分钟.回来时,他以每小时8千米的速度通过平路后,以每小时4千米的速度上坡,从B地到A地共用小时,求A、B两地相距多少千米?
提示:1 (选间接元)设坡路长x千米
2 选直接元辅以间接元)设坡路长为x千米,A、B两地相距y千米
3 (选间接元)设下坡需x小时,上坡需y小时,
2、设立辅助未知数
例9 (1972年美国中学数学竞赛题)若一商人进货价便谊8%,而售价保持不变,那么他的利润(按进货价而定)可由目前的x%增加到(x+10)%,x等于多少?
提示:引入辅助元进货价M,则0.92M是打折扣的价格,x是利润,以百分比表示,那么写出售货价(固定不变)的等式。
例10(1985年江苏东台初中数学竞赛题)从两个重为m千克和n千克,且含铜百分数不同的合金上,切下重量相等的两块,把所切下的每一块和另一种剩余的合金加在一起熔炼后,两者的含铜百分数相等,问切下的重量是多少千克?
提示: 采用直接元并辅以间接元,设切下的重量为x千克,并设m千克的铜合金中含铜百分数为q1,n千克的铜合金中含铜百分数为q2。
例 11 有一片牧场,草每天都在匀速生长 (草每天增长量相等).如果放牧24头牛,则6 天吃完牧草;如果放牧21头牛,则8天吃完牧草,设每头牛吃草的量是相等的,问如果放牧 16头牛,几天可以吃完牧草.
提示 设每头牛每天吃草量是x,草每天增长量是y,16头牛z天吃完牧草,再设牧场原有草量是a.布列含参方程组。
例 12 甲、乙二人在一圆形跑道上跑步,甲用 40秒钟就能跑完一圈,乙反向跑,每15秒钟和甲相遇一次,求乙跑完一圈需要多少时间?
提示:要求乙跑完一圈需要多少时间,就必须知道他的速度V米/秒,因此可以选择V 作参数.
3、方程与不等式结合
例13 数学测验中共有20道选择题。评分方法是:每答对一题给6分,答错一题扣2分,不答不给分。有一个学生只有一道题没答,并且他的成绩在60分以上,那么他至少答对多少题?
提示:利用方程、不等式组成的混合组求解。
第五讲 整数指数
一、知识要点
1、定义: (n³2,n为自然数)
2、整数指数幂的运算法则:
(1)
(2)
(3),,
3、规定:a0=1(a¹0) a-p=(a¹0,p是自然数)。
4、当a,m为正整数时,am的末位数字的规律:
记m=4p+q,q=1,2,3之一,则的末位数字与的末位数字相同。
二、例题示范
例1、计算 (1) 55´23 (2) (3a2b3c)(-5a3bc2)
(3) (3a2b3c)3 (4) (15a2b3c)¸(-5a3bc2)
例2、求的末位数字。
提示:先考虑各因子的末位数字,再考虑积的末位数字。
例3、是目前世界上找到的最大的素数,试求其末位数字。
提示:运用规律2。
例4、 求证:。
提示:考虑能被5整除的数的特征,并结合规律2。
例5、已知n是正整数,且x2n=2,求(3x3n)2-4(x2)2n的值。
提示:将所求表达式用x2n表示出来。
例6、求方程(y+x)1949+(z+x)1999+(x+y)2002=2的整数解。
提示:|y+z|,|z+x|,|x+y|都不超过1,分情况讨论。
例7、若n为自然数,求证:10|(n1985-n1949)。
提示:n的末位数字对乘方的次数呈现以4为周期的循环。
例8、 若,求x和y。
结论:x=5,y=2。
例9、对任意自然数n和k,试证:n4+24k+2是合数。
提示:n4+24k+2=(n2+22k+1)2-(2n×2k)2。
例10、对任意有理数x,等式ax-4x+b+5=0成立,求(a+b)2003.
第六讲 整式的运算
一、知识要点
1、整式的概念:单项式,多项式,一元多项式;
2、整式的加减:合并同类项;
3、整式的乘除:
(1) 记号f(x),f(a);
(2) 多项式长除法;
(3) 余数定理:多项式f(x)除以(x-a)所得的余数r等于f(a);
(4) 因数定理:(x-a)|f(x)Ûf(a)=0。
二、例题示范
1、整式的加减
例1、 已知单项式0.25xbyc与单项式-0.125xm-1y2n-1的和为0.625axnym,求abc的值。
提示:只有同类项才能合并为一个单项式。
例2、 已知A=3x2n-8xn+axn+1-bxn-1,B=2xn+1-axn-3x2n+2bxn-1,A-B中xn+1项的系数为3,xn-1项的系数为-12,求3A-2B。
例3、 已知a-b=5,ab=-1,求(2a+3b-2ab) -(a+4b+ab) -(3ab+2b-2a)的值。
提示:先化简,再求值。
例4、 化简: x-2x+3x-4x+5x-…+2001x-2002x。
例5、 已知x=2002,化简|4x2-5x+9|-4|x2+2x+2|+3x+7。
提示:先去掉绝对值,再化简求值。
例6、5个数-1, -2, -3,1,2中,设其各个数之和为n1,任选两数之积的和为n2,任选三个数之积的和为n3,任选四个数之积的和为n4,5个数之积为n5,求n1+n2+n3+n4+n5的值。
例7、王老板承包了一个养鱼场,第一年产鱼m千克,预计第二年产鱼量增长率为200%,以后每年的增长率都是前一年增长率的一半。
(1) 写出第五年的预计产鱼量;
(2) 由于环境污染,实际每年要损失产鱼量的10%,第五年的实际产鱼量为多少?比预计产鱼量少多少?
2、整式的乘除
例1、已知f(x)=2x+3,求f(2),f(-1),f(a),f(x2),f(f(x))。
例2、计算:(2x+1)¸(3x-2)´(6x-4)¸(4x+2)
长除法与综合除法:
一个一元多项式f(x)除以另一个多项式g(x),存在下列关系:
f(x)=g(x)q(x)+r(x) 其中余式r(x)的次数小于除式g(x)的次数。当r(x)=0时,称f(x)能被g(x)整除。
例3、(1)用竖式计算(x3-3x+4x+5)¸(x-2)。
(2)用综合除法计算上例。
(3)记f(x)= x3-3x+4x+5,计算f(2),并考察f(2)与上面所计算得出的余数之间的关系。
例4、证明余数定理和因数定理。
证:设多项式f(x)除以所得的商式为q(x),余数为r,则有
f(x)=(x-b)q(x)+r,将x=b代入等式的两边,得
f(b)=(b-b)q(b)+r,故r=f(b)。
特别地,当r=0时,f(x)= (x-b)q(x),即f(x)有因式(x-b),或称f(x)能被 (x-b)整除。
例5、证明多项式f(x)=x4-5x3-7x2+15x-4能被x-1整除。
例6、多项式2x4-3x3+ax2+7x+b能被x2+x-2整除,求a,b的值。
提示:(1)用长除法,(2)用综合除法,(3)用因数定理。
例7、若3x3-x=1,求f(x)=9x4+12x3-3x2-7x+2001的值。
提示:用长除法,从f(x)中化出3x3-x-1。
例8、多项式f(x)除以(x-1)和(x-2)所得的余数分别为3和5,求f(x)除以(x-1)(x-2)所得的余式。
提示:设f(x)=[ (x-1)(x-2)]q(x)+(ax+b),由f(1)和f(2)的值推出。
例9、试确定a,b的值,使f(x)= 2x4-3x3+ax2+5x+b能被(x+1)( x-2)整除。
第七讲 乘法公式
一、知识要点
1、乘法公式
平方差公式:(a+b)(a-b)=a2-b2
完全平方公式:(a±b)2=a2±2ab+b2
立方和公式:(a+b)(a2-ab+b2)=a3+b3
立方差公式:(a-b)( a2+ab+b2)=a3-b3
2、乘法公式的推广
(1)(a+b)(a-b)=a2-b2的推广
由(a+b)(a-b)=a2-b2, (a-b)( a2+ab+b2)=a3-b3,猜想:
(a-b)( )=a4-b4
(a-b)( )=a5-b5
(a-b)( )=an-bn
特别地,当a=1,b=q时,(1-q)( )=1-qn
从而导出等比数列的求和公式。
(2)多项式的平方
由(a±b)2=a2±2ab+b2,推出
(a+b+c)2=( ) , (a+b+c+d)2=( )
猜想:(a1+a2+…+an)=( )。
当其中出现负号时如何处理?
(3)二项式(a+b)n的展开式
①一个二项式的n次方展开有n+1项;
②字母a按降幂排列,字母b按升幂排列,每项的次数都是n;
③各项系数的变化规律由杨辉三角形给出。
二、乘法公式的应用
例1、运用公式计算
(1) (3a+4b)(3a-4b) (2) (3a+4b)2
例2、运用公式,将下列各式写成因式的积的形式。
(1)(2x-y)2-(2x+y)2 (2)0.01a2-49b2 (3)25(a-2b) -64(b+2a)
例3、填空
(1) x2+y2-2xy=( )2 (2) x4-2x2y2+y4=( )2
(3) 49m2+14m+1=( )2 (4) 64a2-16a(x+y)+(x+y)2
(5) 若m2n2+A+4=(mn+2)2,则A= ;
(6) 已知ax2-6x+1=(ax+b)2,则a= ,b= ;
(7) 已知x2+2(m-3)x+16是完全平方式,则m= .
例4、计算
(1) 200002-19999´20001 (2) 372+26´37+132 (3) 31.52-3´31.5+1.52-100。
提示:(1)19999=20000-1
例5、计算(1) (1+2)(1+22)(1+24)(1+28)(1+216)(1+232)+1。
(2) (1+3)(1+32)(1+34)(1+38)…(1+32n)。
例6、已知x+y=10,x3+y3=100,求x2+y2。
提示:(1)由x3+y3=(x+y)3-3xy(x+y),x2+y2=(x+y)2-2xy导出;
(2)将x+y=10,平方,立方可解。
例7、已知,求,,的值。
例8、已知a+b=1,a2+b2=2,求a3+b3, a4+b4, a7+b7的值。
提示:由(a3+b3)(a4+b4)= a7+b7+a3b4+a4b3= a7+b7+a3b3(a+b)导出a7+b7的值。
例9、已知a+b+c=0,a2+b2+c2=1求下列各式的值:
(1)bc+ca+ab (2)a4+b4+c4
例10、已知a,b,c,d为正有理数,且满足a4+b4+c4+d4=4abcd,求证a=b=c=d。
提示:用配方法。
例11、已知x,y,z是有理数,且满足x=6-3y,x+3y-2z2=0,求x2y+z的值。
例12、计算19492-19502+19512-19522+…+20012-20022。
第八讲 不等式
一、知识要点
1、不等式的主要性质:
(1)不等式的两边加上(或减去)同一个数或整式,所得不等式与原不等式同向;
(2)不等式两边乘以(或除以)同一个正数,所得不等式与原不等式同向;
(3)不等式两边乘以(或除以)同一个负数,所得不等式与原不等式反向.
(4)若A>B,B>C,则A>C;
(5)若A>B,C>D,则A+B>C+D;
(6)若A>B,C<D,则A-C>B-D。
2、比较两个数的大小的常用方法:
(1) 比差法:若A-B>0,则A>B;
(2) 比商法:若>1,当A、B同正时, A>B;A、B同负时,A<B;
(3) 倒数法:若A、B同号,且>,则<AB。
3、一元一次不等式:
(1) 基本形式:ax>b (a¹0);
(2) 一元一次不等式的解:
当a>0时,x>,当a<0时,x<.
二、例题示范
例1、已知a<0,-1<b<0,则a,ab,ab2之间的大小关系如何?
例2、满足的x中,绝对值不超过11的那些整数之和为多少?
例3、一个一元一次不等式组的解是2£x£3,试写出两个这样的不等式组。
例4、若x+y+z=30,3+y-z=50,x,y,z均为非负数,求M=5x+4y+2z的最大值和最小值。
提示:将y,z用x表示,利用x,y,z非负,转化为解关于x的不等式组。
例5、设a,b,c是不全相等的实数,那么a2+b2+c2与ab+bc+ca的大小关系如何?
例6、已知a,b为常数,若ax+b>0的解集是x<,求bx-a<0的解集。
提示:如何确定a,b的正负性?
例7、解关于x的不等式ax-2>x-3a (a¹1)。
例8、解不等式|x-2|+|x+1|<3
提示:去掉绝对值,讨论。
例9、(1)比较两个分数与(n为正整数)的大小;
(2)从上面两个数的大小关系,你发现了什么规律?
(3)根据你自己确定的与之间正整数的个数来确定相应的正整数n的个数。
例10(上海1989年初二竞赛题)如果关于x的不等式(2a-b)x+a-5b>0的解为x<,那么关于x的不等式ax>b的解是多少?
例11、已知不等式>的角是x>的一部分,试求a的取值范围。
例12、设整数a,b满足a2+b2+2<ab+3b,求a,b的值。
提示:将原不等式两边同乘以4并整理得
(2a-b)2+3(b-2)2<4 (1),
又因为a,b都是整数。故(2a-b)2+3(b-2)2£3。若(b-2)2³1,则3(b-2)2³3,这不可能。故0£ (b-2)2<1,从而b=2.将b=2代入(1)得(a-1)2<1,故(a-1)2=0,
a=1.所以a=1,b=2.
第九讲 恒等变形
一、知识要点
1、代数式的恒等:两个代数式,如果对于字母的一切允许值,它们的值都相等,则称这两个代数式恒等。
2、恒等变形:通过变换,将一个代数式化为另一个与它恒等的代数式,称为恒等变形。
二、例题示范
例1、已知a+b+c=2,a2+b2+c2=8,求ab+bc+ca的值。
例2、已知y=ax5+bx3+cx+d,当x=0时,y=-3;当x=-5时,y=9。当x=5时,求y的值。
提示:整体求值法,利用一个数的奇、偶次方幂的性质。
例3、若14(a2+b2+c2)=(a+2b+3c)2,求a:b:c。
提示:用配方法。
注:配方的目的就是为了发现题中的隐含条件,以便利用有关性质来解题.
例4、求证(a2+b2+c2)(m2+n2+k2) -(am+bn+ck)2=(an-bm)2+(bk-cn)2+cm-ak)2
提示:配方。
例5、求证:2(a-b)(a-c)+2(b-c)(b-a)+2(c-a)(c-b)=(b-c)2+(c-a)2+(a-b)2。
提示:1、两边化简。2、左边配方。
例6、设x+2z=3y,试判断x2-9y2+4z2+4xz的值是不是定值,如果是定值,求出它的值;否则,请说明理由。
例7、已知a+b+c=3, a2+b2+c2=3,求a2002+b2002+c2002的值。
例8、证明:对于任何四个连续自然数的积与1的和一定是某个整数的平方。
提示:配方。
例9 、已知a2+b2=1,c2+d2=1,ac+bd=0,求ab+cd的值。
提示:根据条件,利用1乘任何数不变进行恒等变形。
例10、(1984年重庆初中竞赛题)设x、y、z为实数,且
(y-z)2+(x-y)2+(z-x)2=(y+z-2x)2+(z+x-2y)2+(x+y-2z)2.
求的值.
例11、设a+b+c=3m,求证:(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)=0.
第十讲 代数式的值
一、知识要点
求代数式的值的主要方法:
1、利用特殊值;
2、先化简代数式,后代入求值;
3、化简条件后代入代数式求值;
4、同时化简代数式和条件式再代入求值;
5、整体代入法;
6、换元法。
二、例题示范
例1、已知a为有理数,且a3+a2+a+1=0,求1+a+a2+a3+…+a2001的值。
提示:整体代入法。
例2 (迎春杯初中一年级第八届试题)若
例3、已知a+b+c=0,求(a+b)(b+c)(c+a)+abc的值。
提示:将条件式变形后代入化简。
例4、当a=-0.2,b=-0.04时,求代数式值。
例5、已知x2+4x=1,求代数式x5+6x4+7x3-4x2-8x+1的值。
提示:利用多项式除法及x2+4x-1=0。
例6、(1987年北京初二数学竞赛题)如果a是x2-3x+1=0的根,试求
的值.
例7、已知x,y,z是有理数,且x=8-y,z2=xy-16,求x,y,z的值。
提示:配方,利用几个非负数之和为零,则各个非负数都是零。
例8、已知x,y,z,w满足方程组
求xyzw的值。
例9、已知a+b+c=3,(a-1)3+(b-1)3+(c-1)3=0,且a=2,求a2+b2+c2的值。
例10 若求x+y+z的值.
提示 令
例11(x-3)5=ax5+bx4+cx3+dx2+ex+f,则a+b+c+d+e+f=______, b+c+d+e=_____.
例12、若a,c,d是整数,b是正整数,且a+b=c,b+c=d,c+d=a,求a+b+c+d的最大值。(1991年全国初中联赛题)
第十一讲 直线与线段
一、知识要点
1、直线:(1)直线可向两方无限延伸;(2)过两点有且只有一条直线。
2、射线:
3、线段:直线上两点和它们之间的部分称为线段,线段有两个端点。两点间的所有连线中,线段最短。
4、三角形两边之和大于第三边。
二、例题示范
例1、如图,请用线段a,b,c来表示x。
练习1、线段AB长5cm,在AB上取点C,若AC长x,BC长为y,则y与x的关系式是__________,x取值范围是__________。在下面空处作出简图。
练习2、线段PC=1cm,延长PC至D,若CD=x,PD=y,则y与x的关系式是______________,x取值范围是__________。在下面空处作出简图。
例2、在一条直线上,如果给定n个点,那么以它们为端点的线段共有多少条?若从左至右相邻两点的线段的长度依次为a1,a2…,an-1,求所有线段的长度之和。
提示:长度之和S=a1´(n-1) ´1+a2´(n-2) ´2+…+an-1´1´(n-1)
例3、如图,点C、D、E是线段AB的四等分点,点F、G是线段AB的三等侵占为,已知AB=12cm,求CF+DF+EF的长。
例4、将直线上的每一点都染上红、黄色中的一种,求证:必存在同颜色的三个点,使其中一点是另两点连线段的中点。
提示:用构造法。并且用5个点来保证满足条件的点。
例5、在一条直线上已知四个不同的点依次是A、B、C、D,请在直线上找出一点P,使PA+PB+PC+PD最小。
例6、直线上分布着2002个点,我们来标出以这些点为端点的一切可能的线段的中点。试求至少可以得出多少个互不重合的中点。
提示:用归纳法。一般地,若直线上分布着n个点,结论为2n-3。
例7、点A、B在直线MN的两侧,请在MN上求一点P,使PA+PB为最小。
例8、点A、B在直线MN的同侧,请在MN上求一点P,使PA+PB为最小。
例9、两面相邻的墙上分别有两点A、B,如图,问从A到B走怎样的路线,才能使全长最短?(提示:用等角原理。)
例10、在直线MN的同侧有两点A、B,且AB的连线与MN不平行。请在MN上求一点P,使|PA-PB|为最大。
提示:连接AB交MN于P,则P为所求。
例11、在DABC中,D是边AB上任意一点,如图,求证:AB+AC>DB+DC。
例12、P是DABC内一点,求证
(1)AB+AC>PB+PC (2)AB+BC+CA>PA+PB+PC
(3)<<1
例13、已知P、Q是DABC内两点,求证:AB+ACBP+PQ
提示:延长BP、CQ相交于D,则AB+AC>DB+DC=BP+(PD+DQ)+QC>BP+PQ+QC
第十二讲 角
一、知识要点
1、角:有公共端点的两条射线组成的图形叫做角。
2、锐角、直角、钝角、平角、周角。
3、补角、余角。
4、三角形的内角和。
二、例题示范
例1、如图,∠AOD=α,∠AOB=∠COD=β,∠COE=γ。请用α、β、γ表示∠BOE。
例2、如图,已知OE平分∠AOB,OD平分∠BOC,∠AOB为直角,∠EOD=70O,求∠BOC的度数。
练习:如图,已知AOD是一直线,∠AOC=120O,∠BOD=150O,OE平分∠BOC,求∠AOE的度数。
例3、如图,以O为顶点,以OA1,OA2,…,OAn为边小于平角的角有多少个?若αi=∠AiOAi+1,
(i=1,2,…,n)求出所有角的和。
答:共有角n(n-1)/2个,角度的总和为α=α1´(n-1)´1+α2´(n-2)´2+…+αn-1´1´(n-1)。
例4、上题中,若每一个角都作一条角平分线,问至少可得出多少条互不重合的有平分线?
答:2n-3条。
例5、过点O任意作14条射线,求证:以O0 顶点的角中至少有一个小于26O。
例6、如图,已知直线AB与CD相交于O,OE,OF,OG分别是∠AOC、∠BOD、∠AOD的平分线。求证:(1)E、O、F三点在同一直线上;(2)OG^EF。
例7、如图是一个3´3的正方形,求图中∠1+∠2+∠3+…+∠9的和。(答:405O)。
例8、求凸n边形的内角和。
例9、在下图中,找出∠BCD与∠ABC、∠BAC、∠ADC之间的关系。
答:∠BCD=∠ABC+∠BAC+∠ADC。
例10、分别求出下图(1)(2)(3)中∠A+∠B+∠C+∠D+∠E的度数。
图(1) 图(2) 图(3)
例11、分别求出一图(1)(2)(3)中∠A+∠B+∠C+∠D+∠E+∠F的度数。
例12、求下图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠K的度数。
第十三讲 相交线与平行线
一、知识要点
1、平面内两条直线的位置关系:相交或平行。
(1)相交线:如果两条直线有一个公共点,则称为两相交直线;
(2)平行线:如果两条直线没有公共点,则称为平行直线。
2、两条直线的垂直:如果两条直线相交所成的角为直角,则称这两条直线互相垂直。
3、两条直线垂直的两个重要结论:
(1)过一点有且只有一条直线与已知直线垂直;
(2)直线外一点与
展开阅读全文