收藏 分销(赏)

聚酰亚胺辅助制备高定向石墨烯基全炭泡沫及其在导热聚合物复合材料中的应用.pdf

上传人:自信****多点 文档编号:2988638 上传时间:2024-06-12 格式:PDF 页数:12 大小:29.18MB
下载 相关 举报
聚酰亚胺辅助制备高定向石墨烯基全炭泡沫及其在导热聚合物复合材料中的应用.pdf_第1页
第1页 / 共12页
聚酰亚胺辅助制备高定向石墨烯基全炭泡沫及其在导热聚合物复合材料中的应用.pdf_第2页
第2页 / 共12页
聚酰亚胺辅助制备高定向石墨烯基全炭泡沫及其在导热聚合物复合材料中的应用.pdf_第3页
第3页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Cite this:NewCarbonMaterials,2024,39(2):271-282DOI:10.1016/S1872-5805(24)60835-8Polyimide-assisted fabrication of highly oriented graphene-basedall-carbon foams for increasing the thermal conductivityof polymer compositesXIONGKe1,SUNZhi-peng1,HUJi-chen1,MACheng1,WANGJi-tong1,*,GEXiang2,QIAOWen-ming1

2、,*,LINGLi-cheng1(1.State Key Laboratory of Chemical Engineering,East China University of Science and Technology,Shanghai 200237,China;2.Changzhou Fuxi Technology Co,Ltd.,Changzhou 213144,China)Abstract:Grapheneanditsderivativesareoftenpreferentiallyorientedhorizontallyduringprocessingbecauseoftheirt

3、wo-di-mensional(2D)layerstructure.Asaresult,thermalinterfacematerials(TIMs)composedofapolymermatrixandgraphene-derivedfillersoftenhaveahighin-plane(IP)thermalconductivity(K),however,thelowthrough-plane(TP)Kmakesthemunsuitableforpracticaluse.Wereportthedevelopmentofhigh-qualitypolyimide/graphitenanos

4、heets(PG)perpendiculartotheplaneusingadir-ectionalfreezingtechniquethatincreasetheTPKofpolymer-basedcomposites.Graphene-derivednanosheets(GNs)wereobtainedbythecrushingofscrapsofhighlythermallyconductivegraphenefilms.Awater-solublepolyamicacidsaltsolutionwasusedtodis-persethehydrophobicGNsfillertoach

5、ievedirectionalfreezing.Thepolyimide,whichfacilitatedthedirectionalalignmentoftheGNs,wasthengraphitized.TheintroductionoftheGNsincreasestheorderanddensityofthePG,thusimprovingthestrengthandheattransferperformanceofitspolydimethylsiloxane(PDMS)composite.TheobtainedPG/PDMScomposite(21.1%PG,massfrac-ti

6、on)hasanimpressiveTPKof14.56Wm1K1,81timesthatofpurePDMS.Thissimplepolyimide-assisted2DhydrophobicfillersalignmentmethodprovidesideasforthewidespreadfabricationofanisotropicTIMsandenablesthereuseofscrapsofgraphenefilms.Key words:Graphenefilm;Reutilization;Thermalconductivity;Anisotropicfoam;Thermalin

7、terfacematerials1IntroductionTheperformanceofintegratedcircuitsoftende-gradessignificantlyorfailstooperateduetooverheat-ing.Consequently,effectivethermalmanagementma-terials are vital for the optimal operation of high-power electronic devices13.Polymer-based thermalinterfacematerials(TIMs)arewidelyi

8、nvestigatedfortheheatdissipationofelectronicdevicesduetotheirmultiplemeritsoflightweight,chemicalstability,easyprocessability,and cost-effectiveness46.However,polymersgenerallyexhibitlowthermalconductivity(K)(0.5 Wm1K1)due to the disordered struc-tures and entanglements which cause considerablephono

9、nscattering78.ToimprovetheKofcompos-ites,thermallyconductivefillersareoftencompoun-dedwithpolymersforthegoalofincreasingthephon-ontransportpath9.Grapheneanditsderivativesareconsideredtobethemostpromisingcandidatesforthermalfillersbe-causeoftheirhighin-plane(IP)K1014.Linetal.ob-tainedpolymer/graphene

10、compositeswithKof1.431.84Wm1K1byfirstcoatingthepolymerpowderwith graphene and then hot pressing,in which thegraphenecontentwas10%(massfraction)15.Fangetal.preparedpolyvinylbutyral(PVB)/graphenecom-positesbysolutionblending,andtheKofthesamplereached 4.52 Wm1K1 with 30%(mass fraction)graphenenanoplate

11、s16.Nevertheless,evenwithhighgrapheneconcentration,theKofcompositesformedbydirectlymixinggraphenesheetswithpolymermat-Received date:2023-09-17;Revised date:2023-12-19Corresponding author:WANGJi-tong,Professor.E-mail:;QIAOWen-ming,Professor.E-mail:Author introduction:XIONGKe.E-mail:Supplementarydataa

12、ssociatedwiththisarticlecanbefoundintheonlineversion.Homepage:http:/ did not rise as significantly as predicted.It ismostly owing to the disconnected phonon transportchannelbetweenthefillerandpolymermatrixandthelargefiller-fillerinterfacialthermalresistance,whichcanbemitigatedbypre-establishingthree

13、-dimension-al(3D)fillernetworksinthepolymermatrix1722.Baietal.fabricatedgraphenefoamswith3Dinterconnec-tednetworksbychemicalvapordeposition,andtheKof its polydimethylsiloxane(PDMS)composite was1.2 times higher than that of non-3D structuredgraphenesheetswiththesamemassloading23.Thesuccessivefillerne

14、tworksactashigh-speedchannels,thuseffectivelyreducingphononscatteringwhileen-suringthatmostoftheheatcanbetransportedthroughthe fillers24.However,current polymer/graphenecompositestypicallyexhibitheattransferisotropy,orhighIPK,duetothetendencyofgraphenetoorient-ate horizontally during processing2526.

15、Notably,TIMs are also expected to have high through-plane(TP)K,to minimize the temperature differencebetweentheheatspreadersandtheelectronicsinprac-ticalapplications5,2728.Toachievethisgoal,design-ing anisotropic polymer/graphene composites withhighTPKisofgreatimportance.Directionalfreezingisusedext

16、ensivelytovertic-allyalignthefillerswithahighaspectratiooftwo-di-mensional(2D)lamellarstructures,whichobtainananisotropic 3D porous skeleton after freeze-drying,andthecorrespondingpolymerbackfilledcompositesexhibit heat transfer anisotropy4,2931.Wong et al.constructedaligned3Dporousnetworksofboronni

17、-tride/reducedgrapheneoxidebydirectionalfreezingstrategy,whicheffectivelyenhancedtheTPKofnat-uralrubbercomposite30.DirectionalfreezingleadstoanincreaseintheTPKofTIMsbyalteringtheorient-ationofthe2Dfillerinthe3Dthermallyconductivenetworks.Sincetheprocessdependsonthedirection-algrowthoficecrystals,dir

18、ectionalfreezingismostlyadoptedforwetgraphenesystemssuchasgrapheneoxide aqueous solutions or graphene hydrogels29,32.However,finding ways to directly introduce hydro-phobic2Dhigh-qualityfillersintoaqueoussystems,andhencedirectionalfreezingisworthinvestigating.Herein,wedevelopverticallyaligned3Dporou

19、spolyimide/graphitenanosheets(PG)thermally con-ductiveframeworksbydirectionalfreezingandhigh-temperature thermal annealing.On one hand,thegraphene-derived graphite nanosheets(GNs)arepowderscrapsofhighthermallyconductivegraphenefilms,retainingthehighinherentK.IntroducingGNsintoPGfoamsnotonlyrealizest

20、hesecondaryutiliza-tion of the trimmings but also provides morethermallyconductive pathways,thus effectively in-creasingtheKofthepolymer.Ontheotherhand,thewater-solublepolyamicacidsalt(WPAA)solutionisutilizedforthefirsttimetodirectlydispersehydro-phobicGNsfillerswhileenablingthemtoengageinicetemplat

21、eassemblyinthewetsystem.Thedisper-sion process is facile without using surfactants ormodifying the GNs.Moreover,the polyamic acid(PAA)hasassistedintheverticalorientationoftheGNs,whilesimultaneouslyactingasthecarbonpre-cursortobeconvertedintohighlythermallyconduct-ivefilleraftergraphitization.Thus,th

22、ePGthermallyconductive frameworks entirely consist of verticallyalignedorderedgraphiteskeletons,includingGNsandgraphitized polyimide(PI),and the high-qualitygraphitestructuresfacilitatetheheattransfer.Notably,aftervacuumimpregnationwithPDMS,theTPKoftheobtainedPDMS/PGcompositesissignificantlyin-creas

23、ed.At21.1%(massfraction)PGcontent,theTPKofPDMS/PGisupto14.56Wm1K1,which81timeshigherthanthatofpurePDMS,withathermallyconductiveenhancementefficiency()of378%.Fur-thermore,theexcellentcompressivepropertiesofPDMS/PGensure a close fit to the solid surface,thus en-ablingtheeffectivefillingofgapsatthesoli

24、dinter-face.2Experimental 2.1 MaterialsTheGNswereobtainedbymechanicallyandair-flowcrushingthehighthermallyconductivegraphenefilmscraps,withanaveragelateralsizeoflessthan20m(Fig.S1),whichweremanufacturedbyChang-272新型炭材料(中英文)第39卷zhou Fuxi Tech Co.,Ltd.N,N-dimethylacetamide(DMAc,99%),triethylamine(TEA,

25、99%),andpyro-mellitic dianhydride(PMDA,98.0%)were obtainedfromShanghaiTitanTechCo.,Ltd.4,4-diaminodi-phenyl ether(ODA,98.0%)was purchased fromShanghaiDiboChemicalTechCo.,Ltd.PDMS(Syl-gard184)withcuringagentwaspurchasedfromDowCorning.2.2 Preparation of PDMS/PG compositesFig.1depictsaschematicdiagramo

26、ftheprepar-ationofPDMS/PGcomposites.Itismainlydividedinto3parts:(1)fabricationofhighlyanisotropicpor-ousPAA/GNsfoamsbydirectedfreezingapproach;(2)high-temperaturethermalannealingofPAA/GNstoformhigh-qualityall-carbonPGthermallyconduct-iveframeworks;(3)PDMSbackfilledwithPGfoamstoconstructthethermallyc

27、onductivePDMS/PGcom-posites.TheWPAA solutions were obtained by refer-ence to the previously reported methods3334.First,PAA solid was prepared.ODA was mixed withDMAcinanicebathunderanitrogenatmosphere.Aftersoliddissolution,PMDAwasaddedtothesolu-tionandstirredfor1htoobtainthePAAsolution.ThenthePAAsolu

28、tionwasaddedtoexcessivedeion-izedwaterandtheresultingprecipitateswerefreeze-driedtoobtainPAAsolid.Second,theWPAAsolu-tionwasprepared.Typically,5gPAAwasaddedto92.6gdeionizedwater,then2.4gTEAwasaddedandstirredcontinuouslyfor4hatroomtemperature(RT)toobtainaWPAAsolutionwithamassfractionof 5%.Similarly,f

29、urther 7.5%(mass fraction)and10%(massfraction)of WPAA solutions were pre-pared,respectively.Third,PAAx/GNsy foams werefabricated.Specifically,GNs were added to theWPAAsolution,mixedandstirredfor6h,andthenvacuumdefoamed for 0.5 h.The mixture was sub-sequently placed in a silicone mold for directional

30、freezing.This procedure used copper plates as thecoldsourceandliquidnitrogenastherefrigerant.Thefrozenblocksweredriedinafreezedryer(60C,5 Pa)for 72 h to obtain the ordered PAAx/GNsyfoams.Where x is the mass fraction of the WPAAsolution(%)and y is the mass ratio of GNs to theWPAAsolution(%).Finally,t

31、he PAAx/GNsy foam was imidized(300C,3h)andfurtherthermallyannealed(1000C,2h;2000C,1h;2800C,0.5h)togivegraphitedPIx/GNsy(PxGy)block.In addition,the mixture wasalsopre-frozeninarefrigerator(4C)for12htoob-tain disordered PxGy(dPxGy)foams by the samemethod.PDMSandcuringagentweremixedinthemassratio of 10

32、1 and stirred uniformly.The PxGy orOOOOH2NH2ONH2NOHOOCHOOCOOOOOOOOOR3+NOOCR3+NOOCOOCN+R3NHR=CH2CH3OOOOOOOOLyophilizationThermal annealinglmpregnationPDMSImidizationDirectional freezingONPIIn-planeThrough-planeNHNNHnnnHNCOOHOOOPMDAPAAWPAAODAFig.1SchematicillustrationforthefabricationofPDMS/PGcomposit

33、e第2期XIONGKeetal:Polyimide-assistedfabricationofhighlyorientedgraphene-basedall-carbon273dPxGyfoamswereimmersedintheabovesolutionandimpregnatedunderavacuumfor3h.Thentheblocksweretransferredtoanovenat80Candcuredfor12htoobtainPDMS/PxGyorPDMS/dPxGycompos-ites.2.3 CharacterizationsField emission scanning

34、 electron microscopy(FE-SEM,Nova Nano SEM 450)was employed toobserve the micromorphology of the foams and thecomposites.TheporosityofPGfoamsiscalculatedfrom the density and the true density of graphite(2.26 gcm3)27,35.The X-ray diffractometer(XRD,BrukerD8Advance)wasappliedtoobtainX-raydif-fraction p

35、atterns of the samples,using Cu K radi-ation(=1.540).Ramanmappingimageswerere-cordedusingaRenishawinViaRamanmicroscopesystem(532 nm laser source)with a scan area of40m40minstepsof1m.Thermogravimet-ricanalysis(TGA,TAQ600)wasusedforthethermalstability analysis of samples with a heating rate of10Cmin1.

36、Thethermaldiffusivity()ofthePDMScom-posite was measured by a Nano Flash instrument(NetzschLFA427)andtheKwascalculatedaccord-ingtothefollowingequation:K=Cp(1)whereisthedensity,andCpisthespecificheatca-pacity,CpwasalsomeasuredbyNetzschLFA427.Thesamplesforthermaldiffusivitytestinghaveadia-meterof12.6mm

37、andathicknessofaround2.5mm.Themechanicalpropertiesofblocksamples(14mm14mm5mm)weremeasuredonanelectronicuni-versaltestingmachine(Instron3367)atacompres-sionrateof1mmmin1.Athermalinfraredimager(E4,FLIR)was employed to characterize the heattransferperformanceofthecomposites.3Resultsanddiscussion 3.1 Di

38、spersibility of GNs in the WPAA solutionToaccomplishthedirectedfreezingtechnique,ithasbeenestablishedthattheWPAAsolutionmaybeappliedtodirectlydispersehydrophobicGNs.Theini-tialcontactanglesofGNswithdeionizedwaterandWPAAweremeasured,respectively(Fig.2a,b).Thecontact angle between deionized water and

39、GNs is95.95,indicating the hydrophobicity of GNs26,36.WhereasthecontactanglebetweentheWPAAsolu-tionandGNsis78.84,demonstratingthatGNscouldbeinfiltratedbyWPAA.AsseeninFig.2c,attheini-tial stage,GNs are partially dispersed in deionizedwaterwhileuniformlydispersedintheWPAAsolu-tion.After3hofstanding,th

40、eGNs/H2OsuspensionshowsobviousseparationandmostoftheGNsprecip-itatesatthebottomofthebottle.ItresultsfromthehydrophobicityoftheGNsmakingthemsubjecttotherepulsive force of water molecules.In contrast,theGNs/WPAAsuspensionisstillwelldispersedwithoutanyseparationorprecipitation(Fig.2d).Itispossiblydueto

41、 the-interactions of the linear PAA mo-leculeswiththeGNsthatcontributetotheuniformdispersionoftheGNsintheaqueoussolution.Thus,theWPAA/GNssuspensiondoesnotsuffersignific-ant precipitation or separation during the brief pre-freezing process,allowing the PAA/GNs foam tomaintainintegrityandconsistency.3

42、.2 Morphologic and structural evolution of PGfoamTheWPAA/GNswetdispersionsystemisplacedinadirectionalfreezingunit,wherethedirectionalar-rayofPAA(Fig.S2)inducesverticalalignmentofGNs.As shown in Fig.3a-c,typical PAA10/GNs2.5foam exhibits a highly anisotropic structure.In theverticaldirection,small-si

43、zedGNsareembeddedinthePAAcellwallanduniformlydistributedalongthe(a)(c)(d)(b)GNs/H2OGNs/H2OGNs/WPAAGNs/H2OGNs/WPAAGNs/WPAA3 h0 h95.9578.84Fig.2TheinitialcontactangleofGNswith(a)H2Oand(b)WPAAsolu-tion.ThesuspensionsoftheGNs/H2OandGNs/WPAA(c)beforeand(d)afterstayfor3h274新型炭材料(中英文)第39卷wallextensiondirec

44、tion.Incontrast,thecross-section-alviewsoftheundirectedfrozendPAA10/GNs2.5foamdisplayarandomlyarrangedstructure(Fig.S3),lead-ing to an increased interfacial thermal resistancebetweenthefillers17.High-temperaturethermalannealingisessentialtoenhancethequalityofthermallyconductiveskelet-ons3738.In this

45、 regard,the PAA/GNs blocks weretransformed into oriented graphite frameworks bythermaltreatments including imidization,carboniza-tion and graphitization.The temperature-dependentevolutionofthecross-sectionalmicromorphologyoftypicalPAA10/GNs2.5foamsismonitoredinFig.3andFig.S4.With increasing annealin

46、g temperature insteps,thecross-sectionalorientedporousstructureoftheP10G2.5foamremainscompletewithoutsignificantdamageorcollapse.Inaddition,thecellwallspacingshortens due to the shrinkage of the foam after theheattreatment(Fig.3c,f).ThevolumeshrinkageofP10G2.5foamis30.06%and61.54%afterimidizationat3

47、00Candcarbonizationat1000C,respectively.However,thischangeisinsignificantabove1000C,whichisconsistentwiththedigitalpictureofP10G2.5foams(Fig.3g).ThevolumeshrinkageaswellasthedensityoftheP10G2.5foamsateachtemperaturestagearedetailedinTableS1.ComparedtoPAA10/GNs2.5(0.22 gcm3),the P10G2.5 foamstill ret

48、ains a relat-ivelyhighdensity(0.24gcm3)afterthermalanneal-ingduetoshrinkage,andthedensestructurecorres-pondstoahigherheattransferefficiency27.Inaddi-tion,afterhigh-temperaturethermalannealing,thePGfoamsallexhibitmoderatecompressivestrength(0.050.75MPa)andhighporosity(87.6%96.7%)(Ta-bleS2),whichallow

49、sthemtoadequatelybackfillthePDMSwithoutstructuralcollapse(Fig.3g).TheeffectofthermalannealingtemperatureonthestructureofPGfoamswasinvestigatedbyXRD.AsshownintheXRDpatternsinFig.4a,thepolymerPAAexhibitsabroadpeakat19.5,correspondingtoitssemicrystallinenature37.Aftergraphitization,theP10G0showsastrong

50、andsharppeakat26.28,corres-pondingtothe(002)crystalplaneofgraphite,whichissimilartotheGNs.ItindicatesthatPAAactsasthecarbonprecursortobeentirelyconvertedintograph-ite after graphitization.For typical PAA10/GNs2.5,itexhibits2peaksrepresentingthepolymerPAAandGNs,respectively.After graphitization,the w

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服