1、第三周周清 正余弦定理小结与复习核心知识1正弦定理:2R,其中R是三角形外接圆的半径由正弦定理可以变形为:(1)abcsin Asin Bsin C;(2)a2Rsin_A,b2Rsin_B,c2Rsin_C;(3)sin A,sin B,sin C等形式,以解决不同的三角形问题2余弦定理:a2b2c22bccos_A,b2a2c22accos_B,c2a2b22abcos_C余弦定理可以变形为:cos A,cos B,cos C.自我检测1. 已知A,B,C为ABC的三个内角,其所对的边分别为a,b,c,且2cos2 cos A0.(1)求角A的值;(2)若a2,bc4,求ABC的面积解(1
2、)由2cos2 cos A0,得1cos Acos A0,即cos A,0A,A.(2)由余弦定理得,a2b2c22bccos A,A,则a2(bc)2bc,又a2,bc4,有1242bc,则bc4,故SABCbcsin A.2.设ABC的内角A,B,C所对的边长分别为a,b,c,且cos B,b2.(1)当A30时,求a的值;(2)当ABC的面积为3时,求ac的值解(1)因为cos B,所以sin B.由正弦定理,可得,所以a.(2)因为ABC的面积Sacsin B,sin B,所以ac3,ac10.由余弦定理得b2a2c22accos B,得4a2c2aca2c216,即a2c220.所以(ac)22ac20,(ac)240.所以ac2.3.ABC的三个内角A,B,C所对的边分别为a,b,c,asin Asin Bbcos2 Aa.(1)求; (2)若c2b2a2,求B.尝试解答(1)由正弦定理得,sin2Asin Bsin Bcos2Asin A,即sin B(sin2Acos2A)sin A.故sin Bsin A,所以.(2)由余弦定理和c2b2a2,得cos B.由(1)知b22a2,故c2(2)a2.可得cos2B,又cos B0,故cos B,所以B45.