资源描述
北师大版六年级下册“正比例和反比例”练习题
一、填空题:
1、两种( )的量,一种量变化,另一种量( ),如果这两种量中( )的两个数的( )一定,这两种量就叫做成正比例的量,它们的关系叫做( ),关系式是( )。
2、两种( )的量,一种量变化,另一种量( ),如果这两种量中( )的两个数的( )一定,这两种量就叫做成反比例的量,它们的关系叫做( ),关系式是( )。
3、练习本总价和练习本本数的比值是( ).当( )一定时,( )和( )成( )比例.
4.35:( )=20÷16==( )%=( )(填小数)
5.因为X=2Y,所以X:Y=( ):( ),X和Y成( )比例。
6.一个长方形的长比宽多20%,这个长方形的长和宽的最简整数比是( )。
7.向阳小学三年级与四年级人数比是3:4,三年级比四年级少( )% 四年级比三年级多( )%
8.甲乙两个正方形的边长比是2:3,甲乙两个正方形的周长比是( ),甲乙两个正方形的面积比是( )。
二、判断题:
1.一个因数不变,积与另一个因数成正比例.( )
2.长方形的长一定,宽和面积成正比例.( )
3.大米的总量一定,吃掉的和剩下的成反比例.( )
4.圆的半径和周长成正比例.( )
5.分数的分子一定,分数值和分母成反比例.( )
6.铺地面积一定,方砖的边长和所需块数成反比例.( )
7.除数一定,被除数和商成正比例.( )
8.比的前项和后项同时乘以同一个数,比值不变。( )
9.总价一定,单价和数量成反比例。 ( )
10. 正方体体积一定,底面积和高成反比例。 ( )
11. 订阅《今日泰兴》的总钱数和分数成正比例。 ( )
12.铺地面积一定,方砖面积和所需块数成反比例.( )
三、选择题:
1.把一堆化肥装入麻袋,麻袋的数量和每袋化肥的重量.( )
A.成正比例 B.成反比例 C.不成比例
2.和一定,加数和另一个加数.( )
A.成正比例 B.成反比例 C.不成比例
3.在汽车每次运货吨数,运货次数和运货的总吨数这三种量中,成正比例关系是( ),成反比例关系是( ).
A.汽车每次运货吨数一定,运货次数和运货总吨数.
B.汽车运货次数一定,每次运货的吨数和运货总吨数.
C.汽车运货总吨数一定,每次运货的吨数和运货的次数.
4. 已知=1.2、=1.2,所以X和Y比较( )
A、X大 B、Y C、一样大
5.如果A×2=B÷3,那么A:B=( )。
A、2:3 B、3:2 C、1:6 D 6:1
四、解比例。
0.5:=:X :=
(X+25):2.4=16:1.2 5.2:X=40:3
1、仔细观察每张表格,思考表格中两种量之间有关系吗?有什么关系?为什么?
数量/本
1
3
6
8
10
20
……
总价/元
4
12
24
32
40
80
……
单价/元
1.5
2
3
4
5
6
……
总价/元
6
8
12
16
20
24
……
用60元钱购买笔记本,笔记本的单价和可以购买的数量如下表:
单价/元
1.5
2
3
4
5
6
……
数量/本
40
30
20
15
12
10
……
2、用一批纸装订练习本,每本25页,可以装订400本。如果要装订500本,每本有X页。
题中( )量一定,关系式:( )○( )=( )(一定),( )和( )成( )比例。
3、一间会客室地面用边长0.3米的正方形地砖铺,需要640块。如果改用边长0.4米的正方形地砖,需要Y块。
题中( )量一定,关系式:( )○( )=( )(一定),( )和( )成( )比例。
4、在圆柱的侧面积、底面周长、高这三种量中
当底面周长一定时,( )与( )成( )比例;
当高一定时,( )与( )成( )比例;
当侧面积一定时,( )与( )成( )比例。
5、在被除数、除数、商这三种量中,
当( )一定时,( )与( )成正比例;
当( )一定时,( )与( )成反比例;
6、当 a × b = c( a、b、c 为三种量,且均不为0)。
( )一定,( )与( )成( )比例;
( )一定,( )与( )成( )比例;
( )一定,( )与( )成( )比例。
7、判断。
(1)、工作总量一定,工作效率和工作时间成反比例。( )
(2)、图上距离和实际距离成正比例。( )
(3)、X和Y表示两种变化的相关联的量,同时5X-7Y=0,X和Y不成比例。( )
(4)、分数的大小一定,它的分子和分母成正比例。 ( )
(5)、在一定的距离内,车轮周长和它转动的圈数成反比例。 ( )
(6)、两种相关联的量,不成正比例,就成反比例。 ( )
(7)订阅《小学数学评价手册》的份数与所需钱数成正比例。 ( )
(8)在400米赛跑中,跑步的速度和所用时间成反比例。 ( )
(9)工作总量一定,已完成的量和未完成的量成反比例。 ( )
(10)正方体的棱长和体积成正比例。 ( )
(11)被除数一定,除数和商成反比例。 ( )
(12)圆的周长和它的直径成正比例。 ( )
8、判断下面每题中的两种量是不是成比例,如果成比例,成什么比例。
(1)、装配一批电视机,每天装配台数和所需的天数( )。
(2)、正方形的边长和周长( )。
(3)、水池的容积一定,水管每小时注水量和所用时间( )。
(4)、房间面积一定,每块砖的面积和铺砖的块数( )。
(5)、在一定时间里,加工每个零件所用的时间和加工零件的个数( )。
(6)、在一定时间里,每小时加工零件的个数和加工零件的个数( )。
9、思考:明明三岁时体重12千克,十一岁时体重44千克。于是小张就说:“明明的体重和身高成正比例。”你认为小张的说法对吗?为什么?
10、某造纸厂每小时造纸1.5吨,2小时、3小时┈┈各造纸多少吨?
(1)把下表填写完整。
造纸时间/时
1
2
3
4
……
造纸吨数/吨
1.5
……
(2)根据表中的数据,在下图中描出造纸时间和造纸吨数对应的点,再把它们连起来。
(3)造纸吨数与造纸时间成正比例吗?为什么
(4)根据图像判断, 5小时造纸多少吨?
展开阅读全文