收藏 分销(赏)

点差法习题(有答案).doc

上传人:天**** 文档编号:2760142 上传时间:2024-06-05 格式:DOC 页数:5 大小:417.04KB
下载 相关 举报
点差法习题(有答案).doc_第1页
第1页 / 共5页
点差法习题(有答案).doc_第2页
第2页 / 共5页
点差法习题(有答案).doc_第3页
第3页 / 共5页
点差法习题(有答案).doc_第4页
第4页 / 共5页
点差法习题(有答案).doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、(完整word版)点差法习题(有答案)点差法习题【学习目标】 圆锥曲线的中点弦问题是高考常见的题型,在选择题、填空题和解答题中都是命题的热点。它的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解。若已知直线与圆锥曲线的交点(弦的端点)坐标,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦 的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”,它的一般结论叫做点差法公式。使用说明及学法指导】1、通过证明定理,熟悉“点差法”的运用;2、记住点差法推导出的公式,并熟练应用;若设直线与圆锥曲线的交点(弦的

2、端点)坐标为、,将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量。我们称这种代点作差的方法为“点差法”。一、自主证明1、定理 在椭圆(0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则.同理可证,在椭圆(0)中,若直线与椭圆相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则. 2、定理 在双曲线(0,0)中,若直线与双曲线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则.同理可证,在双曲线(0,0)中,若直线与双曲线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则.

3、3、定理 在抛物线中,若直线与抛物线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则.例1 设椭圆方程为,过点的直线交椭圆于点A、B,O为坐标原点,点P满足,点N的坐标为.当绕点M旋转时,求:(1)动点P的轨迹方程;(2)的最大值和最小值.例2 已知双曲线,过点作直线交双曲线C于A、B两点.(1)求弦AB的中点M的轨迹;(2)若P恰为弦AB的中点,求直线的方程.例3 抛物线的过焦点的弦的中点的轨迹方程是( )A. B. C. D. 1. 已知椭圆,则以为中点的弦的长度为( ) A. B. C. D. 2. 已知双曲线中心在原点且一个焦点为,直线与其相交于M、N两点,MN的中点的

4、横坐标为,则此双曲线的方程为( )A. B. C. D. 3. 已知直线与抛物线交于A、B两点,那么线段AB的中点坐标是_.【规律总结】同理可证,在抛物线中,若直线与抛物线相交于M、N两点,点是弦MN的中点,弦MN所在的直线的斜率为,则.一、 以定点为中点的弦所在直线的方程例1、过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程。例2、已知双曲线,经过点能否作一条直线,使与双曲线交于、,且点是线段的中点。若存在这样的直线,求出它的方程,若不存在,说明理由。二、 过定点的弦和平行弦的中点坐标和中点轨迹例3、已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点,求点的坐标。例4、已知

5、椭圆,求它的斜率为3的弦中点的轨迹方程。三、 求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为的椭圆被直线截得的弦的中点的横坐标为,求椭圆的方程。四、圆锥曲线上两点关于某直线对称问题例6、已知椭圆,试确定的取值范围,使得对于直线,椭圆上总有不同的两点关于该直线对称。答 案例1. 解:设直线与椭圆的交点为、为的中点 又、两点在椭圆上,则,两式相减得于是即,故所求直线的方程为,即。例2. 解:设存在被点平分的弦,且、则,两式相减,得故直线由消去,得这说明直线与双曲线不相交,故被点平分的弦不存在,即不存在这样的直线。评述:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。由此题可看到中点弦问题中判断点的位置非常重要。(1)若中点在圆锥曲线内,则被点平分的弦一般存在;(2)若中点在圆锥曲线外,则被点平分的弦可能不存在。例3. 解:设弦端点、,弦的中点,则 , 又 ,两式相减得即 ,即点的坐标为。例4. 解:设弦端点、,弦的中点,则, 又 ,两式相减得即,即 ,即由,得点在椭圆内它的斜率为3的弦中点的轨迹方程为例5.解:设椭圆的方程为,则设弦端点、,弦的中点,则, ,又,两式相减得即 联立解得,所求椭圆的方程是例6.解:设,为椭圆上关于直线的对称两点,为弦的中点,则,两式相减得,即,这就是弦中点轨迹方程。它与直线的交点必须在椭圆内联立,得则必须满足,即,解得

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服