收藏 分销(赏)

Finite-Element-Method-(FEM)(ppt文档).ppt

上传人:w****g 文档编号:2671172 上传时间:2024-06-04 格式:PPT 页数:45 大小:2.80MB
下载 相关 举报
Finite-Element-Method-(FEM)(ppt文档).ppt_第1页
第1页 / 共45页
Finite-Element-Method-(FEM)(ppt文档).ppt_第2页
第2页 / 共45页
Finite-Element-Method-(FEM)(ppt文档).ppt_第3页
第3页 / 共45页
Finite-Element-Method-(FEM)(ppt文档).ppt_第4页
第4页 / 共45页
Finite-Element-Method-(FEM)(ppt文档).ppt_第5页
第5页 / 共45页
点击查看更多>>
资源描述

1、Finite Element Method(FEM)BELA:Finite Element Electrostatic SolverFEMM:Finite Element Method Magnetics5/25/2024ContentsPlasma ApplicationModeling GroupPOSTECHIntroduction to BELA and FEMM packagesStep 1.Drawing the problem geometryStep 2.Solve the problemStep 3.Results analysisSome more examplesNume

2、rical methods5/25/2024ContentsPlasma ApplicationModeling GroupPOSTECHIntroduction to BELA and FEMM packagesStep 1.Drawing the problem geometryStep 2.Solve the problemStep 3.Results analysisSome more examplesNumerical methods5/25/2024BELA:IntroductionPlasma ApplicationModeling GroupPOSTECHBELA and FE

3、MM are freeware software packages for 2D analysis of electrostatic and magnetostatic linear problems.These packages were written by David Meeker.The homepage is located at:http:/femm.foster-5/25/2024BELA:Triangle Plasma ApplicationModeling GroupPOSTECHTriangle is a 2D mesh generator and Delaunay Tri

4、angulator.It was written by Jonathan Shewchuk.The homepage:http:/www-2.cs.cmu.edu/quake/triangle.htmlWinner of the 2003 James Hardy WilkinsonPrize in Numerical Software5/25/2024BELA:Boundary ConditionsPlasma ApplicationModeling GroupPOSTECHDirichlet,the value is explicitly defined on the boundary,e.

5、g.Neumann,the normal derivative is defined on the boundary,e.g.Mixed,If no boundary conditions are defined,Neumann BC is used.5/25/2024ContentsPlasma ApplicationModeling GroupPOSTECHIntroduction to BELA and FEMM packagesStep 1.Drawing the problem geometryStep 2.Solve the problemStep 3.Results analys

6、isSome more examplesNumerical methods5/25/2024BELA:Geometry of the ProblemPlasma ApplicationModeling GroupPOSTECHProblem Type:Planar or AxisymmetricLength Units:mils,micrometers,millimeters,centimeters,inches,and meters5/25/2024BELA:Geometry of the ProblemPlasma ApplicationModeling GroupPOSTECH5/25/

7、2024BELA:Object Properties(1)Plasma ApplicationModeling GroupPOSTECHBoundary Properties:Fixed VoltageMixedSurface Charge DensityPeriodicAntiperiodicMaterials Library5/25/2024BELA:Object Properties(2)Plasma ApplicationModeling GroupPOSTECH5/25/2024BELA:Object Properties(3)Plasma ApplicationModeling G

8、roupPOSTECH5/25/2024ContentsPlasma ApplicationModeling GroupPOSTECHIntroduction to BELA and FEMM packagesStep 1.Drawing the problem geometryStep 2.Solve the problemStep 3.Results analysisSome more examplesNumerical methods5/25/2024BELA:Mesh and SolverPlasma ApplicationModeling GroupPOSTECH5/25/2024C

9、ontentsPlasma ApplicationModeling GroupPOSTECHIntroduction to BELA and FEMM packagesStep 1.Drawing the problem geometryStep 2.Solve the problemStep 3.Results analysisSome more examplesNumerical methods5/25/2024BELA:ResultsPlasma ApplicationModeling GroupPOSTECHContour PlotDensity Plots:Voltage(V)Ele

10、ctric Field Intensity(E)Electric Flux Density (D)5/25/2024BELA:Results(1)Plasma ApplicationModeling GroupPOSTECH5/25/2024BELA:Results(1)Plasma ApplicationModeling GroupPOSTECH5/25/2024BELA:Results(2)Plasma ApplicationModeling GroupPOSTECH5/25/2024BELA:Results(3)Plasma ApplicationModeling GroupPOSTEC

11、H5/25/2024BELA:Results(4)Plasma ApplicationModeling GroupPOSTECH5/25/2024BELA:ResultsPlasma ApplicationModeling GroupPOSTECHLine Plots:Potential along the contour Magnitude of the flux density along the contour(|D|)Component of flux normal to the contour(D.n)Component of flux density tangential to t

12、he contour(D.t)Magnitude of the field intensity along the contour(|E|)Component field intensity normal to the contour(E.n)Component of field intensity tangential to the contour(E.t)5/25/2024BELA:Results(5)Plasma ApplicationModeling GroupPOSTECH5/25/2024BELA:Results(5)Plasma ApplicationModeling Group

13、POSTECH5/25/2024BELA:Results(6)Plasma ApplicationModeling GroupPOSTECH5/25/2024BELA:Results(6)Plasma ApplicationModeling GroupPOSTECH5/25/2024BELA:ResultsPlasma ApplicationModeling GroupPOSTECHLine Integrals:Voltage drop along the contour(E.t)Total electric flux passing through the contour(D.n).If t

14、he contour is closed,the result is equal to the charge inside this contour Contour Length and/or Area Force from stress tensor Torque from stress tensor5/25/2024BELA:ResultsPlasma ApplicationModeling GroupPOSTECHBlock Integrals:Storage Energy Block cross-section area Block Volume Average E over the

15、volume Average D over the volume5/25/2024BELA:Results(7)Plasma ApplicationModeling GroupPOSTECH5/25/2024ContentsPlasma ApplicationModeling GroupPOSTECHIntroduction to BELA and FEMM packagesStep 1.Drawing the problem geometryStep 2.Solve the problemStep 3.Results analysisSome more examplesNumerical m

16、ethods5/25/2024BELA:Example One QuarterPlasma ApplicationModeling GroupPOSTECH5/25/2024BELA:Example One QuarterPlasma ApplicationModeling GroupPOSTECH5/25/2024BELA:Example One QuarterPlasma ApplicationModeling GroupPOSTECH5/25/2024BELA:Example CirclePlasma ApplicationModeling GroupPOSTECH5/25/2024BE

17、LA:Example CirclePlasma ApplicationModeling GroupPOSTECH5/25/2024BELA:Example CirclePlasma ApplicationModeling GroupPOSTECH5/25/2024ContentsPlasma ApplicationModeling GroupPOSTECHIntroduction to BELA and FEMM packagesStep 1.Drawing the problem geometryStep 2.Solve the problemStep 3.Results analysisS

18、ome more examplesNumerical methods5/25/2024BELA:Numerical MethodsPlasma ApplicationModeling GroupPOSTECHGeneral description of the finite element method:Step 1.The problem is discretized by dividing the total space domain into simple subdomains,the elements.In 2D problems the basic region is divided

19、 into triangles,parallelograms or curved-sided triangles.For 3D problems the region is discretized into tetrahedral or cubic elements.5/25/2024BELA:Numerical MethodsPlasma ApplicationModeling GroupPOSTECHGeneral description of the finite element method:BELA(and FEMM)uses triangular elements with lin

20、ear approximation of the potential by the expressionPotential along any triangle edge is the linear interpolate between its two vertex values,so if two triangles share the same vertices,the potential will be continuous across the interelement boundary.The linear algebra problem is formed by choosing

21、 the potential on the basis of minimizing the total energy of the problem.5/25/2024BELA:Numerical MethodsPlasma ApplicationModeling GroupPOSTECHGeneral description of the finite element method:BELA(and FEMM)uses the Cuthill-McKee method for renumbering the nodes.Source file:cuthill.cpp5/25/2024BELA:

22、Numerical MethodsPlasma ApplicationModeling GroupPOSTECHGeneral description of the finite element method:Step 2.For each of the elements a suitable approximation to the functions which describe the problem,has to be chosen.In general the form of the trial function in the element is controlled by fun

23、ction value at certain points of the element,the nodes.5/25/2024BELA:Numerical MethodsPlasma ApplicationModeling GroupPOSTECHGeneral description of the finite element method:Step 3.Solving the system of equations is the final step in a FEM.Once the system of equations is solved,the desired parameters can be compute and display in for of the curves,plots,etc.This stage is often referred to as postprocessing.To solve the set of linear equations Symmetric Successive Over Relaxation(SSOR)method is used.Source file:spars.cpp5/25/2024

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服