收藏 分销(赏)

人教版高数选修2-2第4讲:函数的极值与导数(教师版).doc

上传人:精**** 文档编号:2565840 上传时间:2024-06-01 格式:DOC 页数:16 大小:1.92MB
下载 相关 举报
人教版高数选修2-2第4讲:函数的极值与导数(教师版).doc_第1页
第1页 / 共16页
人教版高数选修2-2第4讲:函数的极值与导数(教师版).doc_第2页
第2页 / 共16页
人教版高数选修2-2第4讲:函数的极值与导数(教师版).doc_第3页
第3页 / 共16页
人教版高数选修2-2第4讲:函数的极值与导数(教师版).doc_第4页
第4页 / 共16页
人教版高数选修2-2第4讲:函数的极值与导数(教师版).doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、导数与函数的极值 1、结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 2、理解函数极值的概念,会用导数求函数的极大值与极小值 一、导数与函数的极值:1观察图1.3.8 表示高台跳水运动员的高度h随时间t变化的函数=-4.9t2+6.5t+10的图象,回答以下问题(1)当t=a时,高台跳水运动员距水面的高度最大,那么函数在t=a处的导数是多少呢?(2)在点t=a附近的图象有什么特点? (3)点t=a附近的导数符号有什么变化规律?共同归纳: 函数h(t)在a点处h/(a)=0,在t=a的附近,当ta时,函数单调递增, 0;当ta时,函数单调递减, 0,即当t在a的附近从小到大经过a时

2、, 先正后负,且连续变化,于是h/(a)=0.3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢?、探索研讨1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题:(1)函数y=f(x)在a.b点的函数值与这些点附近的函数值有什么关系?(2) 函数y=f(x)在a.b.点的导数值是多少?(3)在a.b点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢?2、极值的定义:我们把点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值;点b叫做函数y=f(x)的极大值点,f(a)叫做函数y=f(x)的极大值。极大值点与极小值点称为极值点, 极大值与极小值称

3、为极值. 类型一:函数的单调性与导数:例1、求函数的极值解:=x2-4=(x-2)(x+2)令=0,解得x=2,或x=-2.下面分两种情况讨论:(1) 当0,即x2,或x-2时;(2) 当0,即-2x2时.当x变化时, ,f(x)的变化情况如下表:x(-,-2)-2(-2,2)2(2,+)+0_0+f(x)单调递增单调递减单调递增因此,当x=-2时,f(x)有极大值,且极大值为f(-2)= ;当x=2时,f(x)有极小值,且极小值为f(2)=函数的图象如:归纳:求函数y=f(x)极值的方法是:1求,解方程=0,当=0时:(1) 如果在x0附近的左边0,右边0,那么f(x0)是极大值.(2) 如

4、果在x0附近的左边0,右边0,那么f(x0)是极小值练习:1求下列函数的极值.(1)y=x27x+6 (2)y=x327x(1)解:y=(x27x+6)=2x7令y=0,解得x=.当x变化时,y,y的变化情况如下表.0+极小值当x=时,y有极小值,且y极小值=.(2)解:y=(x327x)=3x227=3(x+3)(x3)令y=0,解得x1=3,x2=3.当x变化时,y,y的变化情况如下表.-3(-3,3)3+00+极大值54极小值-54当x=3时,y有极大值,且y极大值=54.当x=3时,y有极小值,且y极小值=54考点一 求含字母参数的函数的极值考例1.(06安徽卷)设函数,已知是奇函数。

5、()求、的值。()求的单调区间与极值。思路分析:先求出,再利用奇函数定义即可求出b,c的值,再利用导数这一工具,可求出函数的单调区间及极值解析:(),。从而是一个奇函数,所以得,由奇函数定义得;()由()知,从而,令=0,解得,由,由此可知,函数的单调递增区间是和;单调递减区间是;进而得在时,取得极大值,极大值为,在时,取得极小值,极小值为。锦囊妙计:熟练掌握利用导数这一有效工具求函数的单调区间、极值、最值,力求解答思路顺畅,思维严谨,书写规范。举一反三:(2005年全国高考题)设a为实数,函数 ()求的极值.()当a在什么范围内取值时,曲线轴仅有一个交点.解:(I)=321若=0,则=,=1

6、当变化时,变化情况如下表:(,)(,1)1(1,+)+00+极大值极小值的极大值是,极小值是(II)函数由此可知,取足够大的正数时,有0,取足够小的负数时有0,所以曲线=与轴至少有一个交点结合的单调性可知:当的极大值0即(1,+)时,它的极大值也大于0,因此曲线=与轴仅有一个交点,它在(,)上。当(1,+)时,曲线=与轴仅有一个交点。考点二 求函数的最值考例2.已知a为实数,(1)若,求在2,2 上的最大值和最小值;(2)若在(,2和2,+)上都是递增的,求a的取值范围.思路分析:(1)按照利用导数求函数的最值的步骤去求解。(2)当函数f(x)在给定的区间上递增时,则在该区间上恒有,从而得到关

7、于a的不等式。解: ()由原式得 由 得,此时有.由得或x=1 ,当变化时,的变化如下表-递增极大值递减极小值递增 所以f(x)在2,2上的最大值为最小值为 (2)解法一: 的图象为开口向上且过点(0,4)的抛物线,由条件得 即 2a2. 所以a的取值范围为2,2. 解法二:令即 由求根公式得: 所以在和上非负. 由题意可知,当x2或x2时, 0, 从而x12, x22, 即 解不等式组得: 2a2. a的取值范围是2,2.锦囊妙计:(1)极大值,极小值是否就是最大值,最小值,要与区间两端点的函数值进行比较,才能下结论。(2)在已知函数f(x)是增函数(或减函数)求参数的取值范围时,应令恒成立

8、,解出参数的取值范围,然后检验参数的取值能否使f(x)恒等于0,若能恒等于0,则参数的这个值应舍去,若f(x)不恒为0,则由,x恒成立解出的参数的取值范围确定。举一反三:1.(06浙江卷)在区间上的最大值是()A-2B0C2D4解:,令可得x0或2(2舍去),当1x0,当0x1时,0,所以当x0时,f(x)取得最大值为2。选C2. (06全国卷)已知a 0 ,函数f(x)=(-2ax) (1) 当x为何值时,f(x)取得最小值?证明你的结论; (2)设 f(x)在 -1,1上是单调函数,求a的取值范围.解:(I)对函数求导数得令得+2(1)2=0从而+2(1)2=0 解得 当 变化时,、的变化

9、如下表 + 0 0 +递增极大值递减 极小值 递增在=处取得极大值,在=处取得极小值。当0时,1,在上为减函数,在上为增函数而当时=,当x=0时,所以当时,取得最小值(II)当0时,在上为单调函数的充要条件是 即,解得于是在-1,1上为单调函数的充要条件是即的取值范围是考点三 利用导数解决函数的综合问题考例3.(06年深圳市模拟)已知函数的图象与函数的图象相切,记.()求实数的值及函数的极值;()若关于的方程恰有三个不等的实数根,求实数的取值范围.思路分析:首先由是的切线,利用导数的几何意义求出b,再由导数与单调性,极值的关系作出函数的图像,利用数形结合的思想求解.解:(1)依题意,令函数的图

10、象与函数的图象的切点为,将切点坐标代入函数可得 .或:依题意得方程,即有唯一实数解, 故,即,故,令,解得,或. 列表如下 : -递增极大值递减极小值0递增从上表可知在处取得极大值,在处取得极小值. ()由()可知函数大致图象如下图所示.作函数的图象,当的图象与函数的图象有三个交点时, 关于的方程恰有三个不 等的实数根.结合图形可知:. 锦囊妙计:读题,审题,发现”是的切线”是解题的关键, 数形结合的思想在该题中再一次得到运用.本题综合了导数,单调性 ,极值 ,方程的解等知识与数形结合的思想方法.综合考察了学生的计算,推理,阅读理解的数学能力.举一反三: (中山市模拟.) 已知函数的图象为曲线

11、E.() 若曲线E上存在点P,使曲线E在P点处的切线与x轴平行,求a,b的关系;() 说明函数可以在和时取得极值,并求此时a,b的值;() 在满足(2)的条件下,在恒成立,求c的取值范围.解:(1) ,设切点为,则曲线在点P的切线的斜率,由题意知有解,即. (2)若函数可以在和时取得极值,则有两个解和,且满足. 易得. (3)由(2),得. 根据题意,()恒成立. 函数()在时有极大值(用求导的方法),且在端点处的值为. 函数()的最大值为. 所以. 误区警示:例.设函数,其中.(1)求函数的极值;(2)若当时,恒有,试确定实数的取值范围.常见错误:(1)忽略0a1导致错误;(2)解带参数的绝

12、对值不等式出错。正解:(1),得,.,. 列表如下:a0+0极小值极大值极小值=;极大值=(2),. 即在上单调递减,即当时. 从而:.恒成立,故.1函数f(x)的定义域为R,导函数f (x)的图象如图所示,则函数f(x)()A无极大值点、有四个极小值点B有一个极大值点、两个极小值点C有两个极大值点、两个极小值点D有四个极大值点、无极小值点答案C解析设f (x)与x轴的4个交点,从左至右依次为x1、x2、x3、x4,当x0,f(x)为增函数,当x1xx2时,f (x)0,f(x)为减函数,则xx1为极大值点,同理,xx3为极大值点,xx2,xx4为极小值点点评有关给出图象研究函数性质的题目,要

13、分清给的是f(x)的图象还是f (x)的图象,若给的是f(x)的图象,应先找出f(x)的单调区间及极(最)值点,如果给的是f (x)的图象,应先找出f (x)的正负区间及由正变负还是由负变正,然后结合题目特点分析求解2(2014屯溪一中期中)设f(x)x3ax2bx1的导数f (x)满足f (1)2a,f (2)b,其中常数a、bR.(1)求曲线yf(x)在点(1,f(1)处的切线方程;(2)设g(x)f (x)ex,求函数g(x)的极值解析f(x)x3ax2bx1,f (x)3x22axb,f (1)2a,32ab2a,f (2)b,124abb,a,b3,f(x)x3x23x1,f (x)

14、3x23x3,f(1),f (1)3,切线方程为y()3(x1),即6x2y10.(2)g(x)(3x23x3)ex,g(x)(6x3)ex(3x23x3)(ex),g(x)3x(x3)ex,当0x0,当x3时,g(x)0,当x0时,g(x)0,g(x)在(,0)上单调递减,在(0,3)上单调递增,在(3,)上单调递减,所以g极小(x)g(0)3,g极大(x)g(3)15e3.3(2014山东省菏泽市期中)已知函数f(x)x2alnx.(1)若a1,求函数f(x)的极值,并指出是极大值还是极小值;(2)若a1,求证:在区间1,)上,函数f(x)的图象在函数g(x)x3的图象的下方解析(1)由于

15、函数f(x)的定义域为(0,),当a1时,f (x)x,令f (x)0得x1或x1(舍去),当x(0,1)时,f (x)0,因此函数f(x)在(1,)上单调递增,则x1是f(x)的极小值点,所以f(x)在x1处取得极小值为f(1).(2)证明:设F(x)f(x)g(x)x2lnxx3,则F(x)x2x2,当x1时,F(x)0,故f(x)在区间1,)上单调递减,又F(1)0,在区间1,)上,F(x)0恒成立,即f(x)0,右侧f (x)0,右侧f (x)0,那么f(x0)是极大值D如果在点x0附近的左侧f (x)0,那么f(x0)是极大值答案C解析导数为0的点不一定是极值点,例如f(x)x3,f

16、 (x)3x2,f (0)0,但x0不是f(x)的极值点,故A错;由极值的定义可知C正确,故应选C.2(2013北师大附中高二期中)函数yx4x3的极值点的个数为()A0B1C2D3 答案B解析yx3x2x2(x1),由y0得x10,x21.当x变化时,y、y的变化情况如下表x(,0)0(0,1)1(1,)y00y无极值极小值故选B.3函数yax3bx2取得极大值和极小值时的x的值分别为0和,则()Aa2b0 B2ab0C2ab0 Da2b0答案D解析y3ax22bx由题设0和是方程3ax22bx0的两根,a2b0.4若a0,b0,且函数f(x)4x3ax22bx2在x1处有极值,则ab的最大

17、值等于()A2B3C6D9 答案D解析f (x)12x22ax2b0的一根为x1,即122a2b0.ab6,ab()29,当且仅当ab3时“”号成立5已知实数a、b、c、d成等比数列,且曲线y3xx3的极大值点坐标为(b,c),则ad等于()A2B1C1D2答案A解析a、b、c、d成等比数列,adbc,又(b,c)为函数y3xx3的极大值点,c3bb3,且033b2,或ad2.6(2013辽宁实验中学期中)函数f(x)(ab1),则()Af(a)f(b)Bf(a)f(b)Df(a),f(b)的大小关系不能确定答案C解析f(x)().当x1时,f (x)0,f(x)为减函数,abf(b)二、填空

18、题7(2014福建安溪一中、养正中学联考)曲线yx(3lnx1)在点(1,1)处的切线方程为_答案4xy30解析y|x1(3lnx4)|x14,切线方程为y14(x1),即4xy30.8(2014河北冀州中学期中)若函数f(x)xasinx在R上递增,则实数a的取值范围为_答案1,1解析f (x)1acosx,由条件知f (x)0在R上恒成立,1acosx0,a0时显然成立;a0时,cosx恒成立,1,a1,0a1;a0时,cosx恒成立,1,a1,即1a0,综上知1a1.9设x1与x2是函数f(x)alnxbx2x的两个极值点,则常数a_.答案解析f (x)2bx1,由题意得a.三、解答题1

19、0已知f(x)ax3bx2cx(a0)在x1时取得极值,且f(1)1.(1)试求常数a、b、c的值;(2)试判断x1时函数取得极小值还是极大值,并说明理由解析(1)由f (1)f (1)0,得3a2bc0,3a2bc0.又f(1)1,abc1.a,b0,c.(2)f(x)x3x,f (x)x2(x1)(x1)当x1时,f (x)0;当1x1时,f (x)0,函数f(x)在(,1)和(1,)上是增函数,在(1,1)上为减函数当x1时,函数取得极大值f(1)1;当x1时,函数取得极小值f(1)1.点评若函数f(x)在x0处取得极值,则一定有f (x0)0,因此我们可根据极值得到两个方程,再由f(1

20、)1得到一个方程,解上述方程组成的方程组可求出参数一、选择题11(2014山东省德州市期中)已知函数f(x)ex(sinxcosx),x(0,2013),则函数f(x)的极大值之和为()A BC D答案B解析f (x)2exsinx,令f (x)0得sinx0,xk,kZ,当2kx0,f(x)单调递增,当(2k1)x2k时,f (x)0,f(x)单调递减,当x(2k1)时,f(x)取到极大值,x(0,2013),0(2k1)2013,0k1006,kZ.f(x)的极大值之和为Sf()f(3)f(5)f(2011)ee3e5e2011,故选B.12已知函数f(x)x3px2qx的图象与x轴切于(

21、1,0)点,则f(x)的极大值、极小值分别为()A,0 B0,C,0 D0,答案A解析f (x)3x22pxq,由f (1)0,f(1)0得,解得f(x)x32x2x.由f (x)3x24x10得x或x1,易得当x时f(x)取极大值.当x1时f(x)取极小值0.13(2014西川中学高二期中)已知f(x)x3ax2(a6)x1有极大值和极小值,则a的取值范围是()A1a2 B3a6Ca6 Da2答案C解析f (x)3x22axa6,f(x)有极大值与极小值,f (x)0有两不等实根,4a212(a6)0,a6.二、填空题14已知函数yx3ax2bx27在x1处有极大值,在x3处有极小值,则a_

22、,b_.答案39解析y3x22axb,方程y0有根1及3,由韦达定理应有经检验a3,b9符合题意三、解答题15(2013新课标文,20)已知函数f(x)ex(axb)x24x,曲线yf(x)在点(0,f(0)处的切线方程为y4x4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值解析(1)f (x)ex(axab)2x4.由已知得f(0)4,f (0)4,故b4,ab8.从而a4,b4.(2)由(1)知,f(x)4ex(x1)x24x,f (x)4ex(x2)2x44(x2)(ex)令f (x)0得,xln2或x2.从而当x(,2)(ln2,)时,f (x)0;当x(2,l

23、n2)时,f (x)0得0x1,f(x)在(0,)和(1,)上单调递增,在(,1)上单调递减,f(x)的极大值点x,极小值点x1.(2)当a4时,f(x)x20,即lnx2x24x0,设g(x)lnx2x24x,则g(x)4x40,则g(x)在(0,)上单调递增,又g(1)20,所以g(x)在(1,)上有唯一实数根17(2014温州八校联考)已知函数f(x)x3ax2b(a、bR)(1)求函数f(x)的单调递增区间;(2)若对任意a3,4,函数f(x)在R上都有三个零点,求实数b的取值范围解析(1)f(x)x3ax2b,f (x)3x22ax3x(x)当a0时,f (x)0函数f(x)没有单调递增区间;当a0时,令f (x)0,得0x,函数f(x)的单调递增区间为(0,a);当a0,得x0,函数f(x)的单调递增区间为(a,0)(2)由(1)知,a3,4时,x、f (x)、f(x)的取值变化情况如下:x(,0)0(0,a)a(a,)f (x)00f(x)极小值极大值f(x)极小值f(0)b,f(x)极大值f()b,对任意a3,4,f(x)在R上都有三个零点,即得b恒成立,b()max4.实数b的取值范围是(4,0)16

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服