1、2022-2023学年高一上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1设是两条不同的直线,是三个不同的平面,给出下列四个命题:若,则;若,则;若,则;若,则.其中正确命题的序号是A.B.和C.和D.和2已知函数,若关于的方程有四个不同的实数解,且,则的取值范围是( )A.B.C.D.3若实数,
2、满足,则的最小值是()A.18B.9C.6D.24函数(且)与函数在同一坐标系内的图象可能是()A.B.C.D.5设全集U=R,集合A=x|0x4,集合B=x|3x5,则A(UB)=()A.B.C.D.6在平行四边形ABCD中,E为AB中点,BD交CE于F,则=()A.B.C.D.7设集合M=,N=,则MN等于A.0B.0,5C.0,1,5D.0,1,58已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4B.C.D.29用反证法证明命题:“已知.,若不能被7整除,则与都不能被7整除”时,假设的内容应为A.,都能被7整除B.,不能被7整除C.,至少有一个能被7整除D.,至多有一个能被7
3、整除10 “”是“”成立的( )条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要二、填空题:本大题共6小题,每小题5分,共30分。11已知函数(为常数)的一条对称轴为,若,且满足,在区间上是单调函数,则的最小值为_.12已知函数,若存在,使得f()g(),则实数a的取值范围为_13已知,则满足f(x)的x的值为_14已知在平面直角坐标系中,角顶点在原点,始边与轴的正半轴重合,终边经过点,则_.15已知,且,则_16在区间上随机取一个实数,则事件发生的概率为_.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17已知定义域为的函数是奇函数.(1)求的值
4、;(2)用函数单调性的定义证明在上是减函数.18环保生活,低碳出行,电动汽车正成为人们购车的热门选择某型号的电动汽车在一段国道上进行测试,汽车行驶速度低于80km/h经多次测试得到该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的数据如下表所示:为了描述国道上该汽车每小时耗电量与速度的关系,现有以下三种函数模型供选择:,且,()(1)当时,请选出你认为最符合表格中所列数据的函数模型,并说明理由;(2)求出(1)中所选函数模型的函数解析式;(3)根据(2)中所得函数解析式,求解如下问题:现有一辆同型号电动汽车从地驶到地,前一段是200km的国道,后一段是60km的高速路(汽车行驶速度不低
5、于80km/h),若高速路上该汽车每小时耗电量(单位:Wh)与速度(单位:km/h)的关系满足,则如何行使才能使得总耗电量最少,最少为多少?19已知函数,其中.(1)求函数的定义域;(2)若函数的最大值为2.求a的值.20如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD底面ABCD,M,N分别是PA,BC的中点,且AD=2PD=2(1)求证:MN平面PCD;(2)求证:平面PAC平面PBD;(3)求四棱锥P-ABCD的体积21在三棱柱ABC-A1B1C1中,ABAC,B1C平面ABC,E,F分别是AC,B1C的中点(1)求证:EF平面AB1C1;(2)求证:平面AB1C平面ABB1参考
6、答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】结合直线与平面垂直的性质和平行判定以及平面与平面的位置关系,逐项分析,即可.【详解】选项成立,结合直线与平面垂直的性质,即可;选项,m可能属于,故错误;选项,m,n可能异面,故错误;选项,该两平面可能相交,故错误,故选A.【点睛】本题考查了直线与平面垂直的性质,考查了平面与平面的位置关系,难度中等.2、D【解析】画出函数的图象,根据对称性和对数函数的图象和性质即可求出【详解】可画函数图象如下所示若关于的方程有四个不同的实数解,且,当时解得或,关于直线对称,则,令函数,则函数
7、在上单调递增,故当时故当时所以即故选:【点睛】本题考查函数方程思想,对数函数的性质,数形结合是解答本题的关键,属于难题.3、C【解析】,利用基本不等式注意等号成立条件,求最小值即可【详解】,当且仅当,即,时取等号的最小值为6故选:C【点睛】本题考查了利用基本不等式求和的最小值,注意应用基本不等式的前提条件:“一正二定三相等”4、C【解析】分,两种情况进行讨论,结合指数函数的单调性和抛物线的开口方向和对称轴选出正确答案.【详解】解:当时,增函数,开口向上,对称轴,排除B,D;当时,为减函数,开口向下,对称轴,排除A,故选:C.【点睛】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域
8、,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.5、D【解析】先求UB,然后求A(UB)【详解】(UB)x|x3或x5,A(UB)x|0x3故选D【点睛】本题主要考查集合的基本运算,比较基础6、A【解析】利用向量加法法则把转化为,再利用数量关系把化为,从而可表示结果.【详解】解:如图,平行四边形ABCD中,E为AB中点,DF,故选A【点睛】此题考查了向量加减法则,平面向量基本定理,难度不大7、C【解析】,选C.8、B【解析】根据三视图得到几何体的直观图,然后结合图中
9、的数据计算出各棱的长度,进而可得最长棱【详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【点睛】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键考查空间想象能力和计算能力9、C【解析】根据用反证法证明数学命题的步骤和方法,应先
10、假设命题的否定成立而命题“ 与都不能被7整除”的否定为“至少有一个能被7整除”,故选C【点睛】本题主要考查用反证法证明数学命题,把要证结论进行否定,得到要证的结论的反面,是解题的关键.10、B【解析】通过和同号可得前者等价于或,通过对数的性质可得后者等价于或,结合充分条件,必要条件的概念可得结果.【详解】或,或,即“”是“”成立必要不充分条件,故选:B.【点睛】本题主要考查了不等式的性质以及充分条件,必要条件的判定,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据是的对称轴可取得最值,即可求出的值,进而可得的解析式,再结合对称中心的性质即可求解.【详解】因为是的
11、对称轴,所以,化简可得:,即,所以,有,可得,因为,且满足,在区间上是单调函数,又因为对称中心,所以,当时,取得最小值.故答案为:.12、【解析】先求出的值域,再求出的值域,利用和得到不等式组求解即可.【详解】因为,所以,故,即因为,依题意得,解得故答案为:.13、3【解析】分和两种情况并结合分段函数的解析式求出x的值【详解】由题意得(1) 或(2) ,由(1)得x2,与x1矛盾,故舍去由(2)得x3,符合x1x3故答案为3【点睛】已知分段函数的函数值求自变量的取值时,一般要进行分类讨论,根据自变量所在的范围选用相应的解析式进行求解,求解后要注意进行验证本题同时还考查对数、指数的计算,属于基础
12、题14、【解析】根据角的终边经过点,利用三角函数的定义求得,然后利用二倍角公式求解.【详解】因为角的终边经过点,所以,所以,所以,故答案为:15、【解析】利用二倍角公式可得,再由同角三角函数的基本关系即可求解.【详解】解:因为,整理可得,解得,或2(舍去),由于,可得,所以,故答案为:16、【解析】由得:,在区间上随机取实数,每个数被取到的可能性相等,事件发生的概率为,故答案为考点:几何概型三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析【解析】(1)既可以利用奇函数的定义求得的值,也可以利用在处有意义的奇函数的性质求,但要注意证明该值
13、使得函数是奇函数.(2)按照函数单调性定义法证明步骤证明即可.【详解】解:(1)解法一:因为函数是定义在上的奇函数,所以,即,整理得,所以,所以.解法二:因为函数是定义在上的奇函数,所以,即,解得.当时,.因为,所以当时,函数是定义域为的奇函数.(2)由(1)得.对于任意的,且,则.因为,所以,则,而,所以,即.所以函数在上是减函数.【点睛】已知函数奇偶性求参数值的方法有:(1)利用定义(偶函数)或(奇函数)求解.(2)利用性质:如果为奇函数,且在处有意义,则有;(3)结合定义利用特殊值法,求出参数值.定义法证明单调性:(1)取值;(2)作差(作商);(3)变形;(4)定号(与1比较);(5)
14、下结论.18、(1),理由见解析(2)(3)当该汽车在国道上的行驶速度为,在高速路上的行驶速度为时,总耗电量最少,最少为【解析】(1)由表格数据判断合适的函数关系,(2)代入数据列方程组求解,(3)分别表示在国道与高速路上的耗电量,由单调性求其取最小值时的速度.【小问1详解】若选,则当时,该函数无意义,不合题意若选,显然该函数是减函数,这与矛看,不合题意故选择【小问2详解】选择,由表中数据得,解得,所以当时,【小问3详解】由题可知该汽车在国道路段所用时间为,所耗电量,所以当时,该汽车在高速路段所用时间为,所耗电量,易知在上单调递增,所以故当该汽车在国道上的行驶速度为,在高速路上的行驶速度为时,
15、总耗电量最少,最少为19、(1);(2).【解析】(1)根据对数的性质进行求解即可;(2)根据对数的运算性质,结合配方法、对数复合函数的单调性进行求解即可.【详解】(1)要使函数有意义,则有,解得,所以函数的定义域为.(2)函数可化.因为,所.因,所以,即,由,解得.20、(1)见解析 (2)见解析(3)【解析】(1)先证明平面MEN平面PCD,再由面面平行的性质证明MN平面PCD; (2)证明AC平面PBD,即可证明平面PAC平面PBD; (3)利用锥体的体积公式计算即可【详解】(1)证明:取AD的中点E,连接ME、NE,M、N是PA、BC的中点,在PAD和正方形ABCD中,MEPD,NEC
16、D;又MENE=E,PDCD=D,平面MEN平面PCD,又MN平面MNE,MN平面PCD; (2)证明:四边形ABCD是正方形,ACBD,又PD底面ABCD,PDAC,且PDBD=D,AC平面PBD,平面PAC平面PBD;(3)PD底面ABCD,PD是四棱锥P-ABCD的高,且PD=1,正方形ABCD的面积为S=4,四棱锥P-ABCD的体积为VP-ABCD=S四边形ABCDPD=41=【点睛】本题考查了空间中的平行与垂直关系的应用问题,也考查了锥体体积计算问题,是中档题21、(1)证明详见解析;(2)证明详见解析.【解析】(1)通过证明,来证得平面.(2)通过证明平面,来证得平面平面.【详解】(1)由于分别是的中点,所以.由于平面,平面,所以平面.(2)由于平面,平面,所以.由于,所以平面,由于平面,所以平面平面.【点睛】本小题主要考查线面平行证明,考查面面垂直的证明,属于中档题.