收藏 分销(赏)

山东省滕州市盖村中学2022-2023学年高一数学第一学期期末学业质量监测试题含解析.doc

上传人:快乐****生活 文档编号:2537668 上传时间:2024-05-31 格式:DOC 页数:11 大小:642.54KB 下载积分:8 金币
下载 相关 举报
山东省滕州市盖村中学2022-2023学年高一数学第一学期期末学业质量监测试题含解析.doc_第1页
第1页 / 共11页
山东省滕州市盖村中学2022-2023学年高一数学第一学期期末学业质量监测试题含解析.doc_第2页
第2页 / 共11页


点击查看更多>>
资源描述
2022-2023学年高一上数学期末模拟试卷 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知点在第二象限,则角的终边在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.设a=,b=,c=,则a,b,c的大小关系是(  ) A. B. C. D. 3.已知全集,集合,,则( ) A.{2,3,4} B.{1,2,4,5} C.{2,5} D.{2} 4.下列函数中,与的奇偶性相同,且在上单调性也相同的是( ) A. B. C. D. 5.设函数在区间上为偶函数,则的值为( ) A.-1 B.1 C.2 D.3 6.下列命题正确的是 A.若两条直线和同一个平面所成的角相等,则这两条直线平行 B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D.若两个平面都垂直于第三个平面,则这两个平面平行 7.已知圆心在轴上的圆与直线切于点.若直线与圆相切,则的值为() A.9 B.7 C.-21或9 D.-23或7 8.采用系统抽样方法从人中抽取32人做问卷调查,为此将他们随机编号为,分组后在第一组采用简单随机抽样方法抽到的号码为.抽到的人中,编号落入区间的人做问卷,编号落入区间的人做问卷,其余的人做问卷.则抽到的人中,做问卷的人数为 A. B. C. D. 9.函数的零点个数为( ) A. B. C. D. 10.已知向量,,且与的夹角为锐角,则的取值范围是 A. B. C. D. 二、填空题:本大题共6小题,每小题5分,共30分。 11.若不等式的解集为,则______,______ 12.不等式的解集是___________.(用区间表示) 13.已知集合,集合,则Venn图中阴影部分表示的集合中元素的个数为________ 14.计算:_______ 15.某市生产总值连续两年持续增加,第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为(  ) A. B. C. D.-1 16.写出一个最小正周期为2的奇函数________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.已知函数 (1)求函数的最小正周期和单调递增区间; (2)若,且,求的值. 18.某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下: 上市时间x天 2 6 20 市场价y元 102 78 120 (1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格; (3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围. 19.化简或求值: (1); (2) 20.若关于的不等式的解集为 (1)求的值; (2)求不等式的解集. 21.如图,在直三棱柱ABC-A1B1C1中,D、E分别为AB、BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1. 求证:(1)直线A1C1∥平面B1DE; (2)平面A1B1BA⊥平面A1C1F. 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、C 【解析】利用任意角的三角函数的定义,三角函数在各个象限中的负号,求得角α所在的象限 【详解】解:∵点P(sinα,tanα)在第二象限, ∴sinα<0,tanα>0, 若角α顶点为坐标原点,始边为x轴的非负半轴,则α的终边落在第三象限, 故选:C 2、C 【解析】根据指数和幂函数的单调性比较大小即可. 【详解】因为在上单调递增,在上单调递减 所以,故. 故选:C 3、B 【解析】 分析】 根据补集的定义求出,再利用并集的定义求解即可. 【详解】因为全集, , 所以, 又因为集合, 所以, 故选:B. 4、C 【解析】先求得函数的奇偶性和单调性,结合选项,利用函数的性质和单调性的定义,逐项判定,即可求解. 【详解】由题意,函数满足,所以函数为偶函数, 当时,可得, 结合指数函数的性质,可得函数为单调递增函数, 对于A中,函数为奇函数,不符合题意; 对于B中,函数为非奇非偶函数函数,不符合题意; 对于C中,函数的定义域为, 且满足,所以函数为偶函数, 设,且时, 则 , 因为且,所以, 所以,即, 所以在为增函数,符合题意; 对于D中,函数为非奇非偶函数函数,不符合题意. 故选:C. 5、B 【解析】由区间的对称性得到,解出b;利用偶函数,得到,解出a,即可求出. 【详解】因为函数在区间上为偶函数, 所以,解得 又为偶函数,所以,即,解得:a=-1. 所以. 故选:B 6、C 【解析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确. [点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式. 7、D 【解析】先求得圆的圆心和半径,根据直线若直线与圆相切,圆心到直线的距离等于半径列方程,解方程求得的值. 【详解】圆心在轴上圆与直线切于点. 可得圆的半径为3,圆心为. 因为直线与圆相切, 所以由切线性质及点到直线距离公式可得, 解得或7. 故选:D 【点睛】本小题主要考查直线和圆的位置关系,考查点到直线的距离公式,属于基础题. 8、C 【解析】从960人中用系统抽样方法抽取32人,则抽样距为k=, 因为第一组号码为9,则第二组号码为9+1×30=39,…, 第n组号码为9+(n-1)×30=30n-21,由451≤30n-21≤750, 得,所以n=16,17,…,25,共有25-16+1=10(人) 考点:系统抽样. 9、B 【解析】当时,令,故,符合;当时,令,故,符合,所以的零点有2个,选B. 10、B 【解析】因为与夹角为锐角,所以cos<,>>0,且与不共线,由得,k>-2且,故选B 考点:本题主要考查平面向量的坐标运算,向量夹角公式 点评:基础题,由夹角为锐角,可得到k得到不等式,应注意夹角为0°时,夹角的余弦值也大于0. 二、填空题:本大题共6小题,每小题5分,共30分。 11、 ①. ②. 【解析】由题设知:是的根,应用根与系数关系即可求参数值. 【详解】由题设,是的根, ∴,即,. 故答案为:,. 12、 【解析】根据一元二次不等式解法求不等式解集. 【详解】由题设,,即, 所以不等式解集为. 故答案为: 13、3 【解析】由集合定义,及交集补集定义即可求得. 【详解】由Venn图及集合的运算可知,阴影部分表示的集合为 又,,, 即Venn图中阴影部分表示的集合中元素的个数为3 故答案为:3. 14、 【解析】求出的值,求解计算即可. 【详解】 故答案为: 15、D 【解析】设平均增长率为x,由题得 故填. 16、 【解析】根据奇函数性质可考虑正弦型函数,,再利用周期计算,选择一个作答即可. 【详解】由最小正周期为2,可考虑三角函数中的正弦型函数,, 满足,即是奇函数; 根据最小正周期,可得. 故函数可以是中任一个,可取. 故答案为:. 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1) (2) 【解析】(1)运用两角和(差)的正弦公式、二倍角的正余弦公式、辅助角公式化简函数的解析式,最后根据正弦型函数的最小正周期公式进行求解即可; (2)运用换元法,结合正弦函数的性质进行求解即可. 【小问1详解】 故的最小正周期为, 由得, 所以增区间是; 【小问2详解】 由(1)知 由得:, 因为,所以 ,所以 18、(1)选择,理由见解析,(2)上市天数10天,最低价格70元,(3) 【解析】(1)根据函数的单调性选取即可. (2) 把点代入中求解参数,再根据二次函数的最值求解即可. (3)参变分离后再求解最值即可. 【详解】(1)随着时间x的增加,y的值先减后增,而所给的三个函数中和显然都是单调函数,不满足题意, ∴选择. (2)把点代入中, 得, 解得, ∴当时,y有最小值 故当纪念章上市10天时,该纪念章的市场价最低,最低市场价为70元 , (3)由题意,令, 若存在使得不等式成立,则须, 又,当且仅当时,等号成立, 所以. 【点睛】本题主要考查了二次函数模型解决实际问题的题型,需要根据题意求解对应的二次函数式再分析最值与求参数.属于中等题型. 19、 (1)99;(2)2. 【解析】(1)根据指数幂的运算公式将式子进行化简求值即可;(2)对式子提公因式,结合同底的对数运算得到最终结果 解析: (1)原式 (2)原式 20、(1);(2). 【解析】(1)由题意可知,方程的两根为,结合根与系数的关系得出的值; (2)根据一元二次不等式的解法求解即可. 【详解】(1)由题意可知,方程的两根为 由根与系数的关系可知,,解得 (2)由(1)可知, ,即,解得 即该不等式的解集为 【点睛】本题主要考查了一元二次不等式的解法,属于中档题. 21、证明过程详见解析 【解析】(1)先证明DE∥A1C1,即证直线A1C1∥平面B1DE.(2)先证明DE⊥平面AA1B1B,再证明A1F⊥平面B1DE,即证平面AA1B1B⊥平面A1C1F. 【详解】证明:(1)∵D,E分别为AB,BC的中点, ∴DE为△ABC的中位线, ∴DE∥AC,∵ABC-A1B1C1为棱柱, ∴AC∥A1C1,∴DE∥A1C1, ∵DE⊂平面B1DE,且A1C1⊄平面B1DE,∴A1C1∥平面B1DE; (2)在ABC-A1B1C1的直棱柱中, ∴AA1⊥平面A1B1C1,∴AA1⊥A1C1, 又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B, ∴A1C1⊥平面AA1B1B,∵DE∥A1C1, ∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B, ∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE, ∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F, ∴平面AA1B1B⊥平面A1C1F 【点睛】本题主要考查空间直线平面位置关系的证明,意在考查学生对这些知识的掌握水平和空间想象转化能力.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服