资源描述
图形的相似练习题
一、选择题:
1.如图,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,连接ED,图中的相似三角形的对数为( )
A.4对 B.6对 C.8对 D.9对
2.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( )
A. B. C. D.
3.如图,平行四边形ABCD中,点E、F分别是AD、AB的中点,EF交AC于点G,那么AG:GC的值为( )
A.1:2 B.1:3 C.1:4 D.2:3
4.如图,矩形AEHC是由三个全等矩形拼成的,AH与BE、BF、DF、DG、CG分别交于点P、Q、K、M、N,设△BPQ, △DKM, △CNH 的面积依次为S1,S2,S3.若S1+S3=20,则S2的值为( )
A.6 B. 8 C. 10 D. 12
5.如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是( )
A.(1,0) B.(-5,-1) C.(1,0)或(-5,-1) D.(1,0)或(-5,-2)
6.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(﹣1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是( )
A. B. C. D.
7.如图所示,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则=( )
A. B. C. D.
8.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是( )
A. B. C. D.
9.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O与AD上的一点E作直线OE,交BA的延长线于点F.若AD=4,DC=3,AF=2,则AE的长是( )
A. B. C. D.
10.如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=( )
A. B. C. D.
11.如图,DE是△ABC的中位线,M是DE的中点,CM的延长线交AB于点N,则:等于( )
A.1:5 B.1:4 C.2:5 D.2:7
12.如图,矩形ABCD中,AB=8,BC=6,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是( )
A.6 B.6.25 C.6.5 D.7
13.如图所示,在正方形ABCD中,E为CD的中点,作BE的中垂线GH,垂足为M,则GM:MH的值为( )
A.4:1 B.3:1 C.3:2 D.5:2
14.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是( )
A. B. C. D.
15.如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为( )
A. B. C. D.
16.如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为( )
A. :1 B. :1 C.5 :3 D.不确定
17.如图,△ABC中,AB=AC,D为BC中点,在BA的延长线上取一点E,使得ED=EC,ED与AC交于点F,则的值为( )
A. B. C. D.
18. 如图, D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,若,则四边形BEFD的面积为( )
A.5 B.7 C.9 D.10
19.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=4,CD=3.下列结论①∠AED=∠ADC;② ;③AC•BE=12;④3BF=4AC,其中结论正确的个数有( )
A.1个 B.2个 C.3个 D.4个
二、填空题:
20.如图,点D是△ABC的边AC的上一点,且∠ABD=∠C,如果,那么= .
21.如图.在等边△ABC中,AC=4,点D、E、F分别在三边AB、BC、AC上,且AF=1,FD⊥DE,∠DFE=60°,则AD的长为_____________.
22.点G是△ABC的重心,GD∥AB,交边BC于点D,如果BC=6,那么CD 的长是 .
23.已知:在平行四边形ABCD中,点E在直线AD上,AE=AD,连接CE交BD于点F,则EF:FC的值是 .
24.如图,菱形ABCD的边长为1,直线l过点C,交AB的延长线于M,交AD的延长线于N,则 .
25.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是 .
26.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,,△CEF的面积为,△AEB的面积为,则的值等于 .
27.如图,矩形ABCD中,AB=3cm,AD=6cm,点E为AB边上的任意一点,四边形EFGB也是矩形,且EF=2BE,则 cm2.
28.如图, E、F是ABCD 的边AD上的两点,△EOF的面积为4,△BOC的面积为9,四边形ABOE的面积为7,则图中阴影部分的面积为 .
29.如图四边形ABCD中,AD=DC,∠DAB=∠ACB=90°,过点D作DF⊥AC,垂足为F.DF与AB相交于E.设AB=15,BC=9,P是射线DF上的动点.当△BCP的周长最小时,DP的长为 .
30.如图,已知∠AOB=60°,点P在边OA上,OP=10,点M,N在边OB上,PM=PN,点C为线段OP上任意一点,CD∥ON交PM、PN分别为D、E.若的MN=3,则值为 .
31.如图,在一块直角三角板ABC中,∠C=90°,∠A=30°,BC=1,将另一个含30°角的△EDF的30°角的顶点D放在AB边上,E、F分别在AC、BC上,当点D在AB边上移动时,DE始终与AB垂直,若△CEF与△DEF相似,则AD= .
32.如图,已知△ABC中,∠B=90°,BC=3,AB=4,D是边AB上一点,DE∥BC交AC于点E,将△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,则AD长为 .
33.如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(﹣1,0),(5,0),(0,2).若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P在移动的过程中,使△PBF成为直角三角形,则点F的坐标是 .
34.如图,在直角坐标系中,点A(2,0),点B (0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折,使点C落在点D处,若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为 .
三、解答题:
35.如图,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3 .
(1)求的值;(2)若CD=2,求BP的长.
36.如图,已知在四边形ABCD中,AD∥BC,E为边CB延长线上一点,联结DE交边AB于点F,联结AC交DE于点G,且.
(1)求证:AB∥CD;(2)如果,求证:.
37.问题提出:
旋转是图形的一种变换方式,利用旋转来解决几何问题往往可以使解题过程更简单,起到事半功倍的效果.
初步思考:
()如图①,点是等边内部一点,且, , .求的长.
小敏在解答此题时,利用了“旋转法”进行证明,她的方法如下:
如图②,将绕点按顺时针方向旋转后得到,连接.(请你完成小敏的解答过程.)
推广运用:
()如图③,在中, , ,点 是内部一点,且, , .求的长.
38.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.
(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.
3、通过活动,使学生养成博览群书的好习惯。
B比率分析法和比较分析法不能测算出各因素的影响程度。√
C采用约当产量比例法,分配原材料费用与分配加工费用所用的完工率都是一致的。X
C采用直接分配法分配辅助生产费用时,应考虑各辅助生产车间之间相互提供产品或劳务的情况。错
C产品的实际生产成本包括废品损失和停工损失。√
C成本报表是对外报告的会计报表。×
C成本分析的首要程序是发现问题、分析原因。×
C成本会计的对象是指成本核算。×
C成本计算的辅助方法一般应与基本方法结合使用而不单独使用。√
C成本计算方法中的最基本的方法是分步法。X
D当车间生产多种产品时,“废品损失”、“停工损失”的借方余额,月末均直接记入该产品的产品成本
中。×
D定额法是为了简化成本计算而采用的一种成本计算方法。×
F“废品损失”账户月末没有余额。√
F废品损失是指在生产过程中发现和入库后发现的不可修复废品的生产成本和可修复废品的修复费用。X
F分步法的一个重要特点是各步骤之间要进行成本结转。(√)
G各月末在产品数量变化不大的产品,可不计算月末在产品成本。错
G工资费用就是成本项目。(×)
G归集在基本生产车间的制造费用最后均应分配计入产品成本中。对
J计算计时工资费用,应以考勤记录中的工作时间记录为依据。(√)
J简化的分批法就是不计算在产品成本的分批法。(×)
J简化分批法是不分批计算在产品成本的方法。对
J加班加点工资既可能是直接计人费用,又可能是间接计人费用。√
J接生产工艺过程的特点,工业企业的生产可分为大量生产、成批生产和单件生产三种,X
K可修复废品是指技术上可以修复使用的废品。错
K可修复废品是指经过修理可以使用,而不管修复费用在经济上是否合算的废品。X
P品种法只适用于大量大批的单步骤生产的企业。×
Q企业的制造费用一定要通过“制造费用”科目核算。X
Q企业职工的医药费、医务部门、职工浴室等部门职工的工资,均应通过“应付工资”科目核算。X
S生产车间耗用的材料,全部计入“直接材料”成本项目。X
S适应生产特点和管理要求,采用适当的成本计算方法,是成本核算的基础工作。(×)
W完工产品费用等于月初在产品费用加本月生产费用减月末在产品费用。对
Y“预提费用”可能出现借方余额,其性质属于资产,实际上是待摊费用。对
Y引起资产和负债同时减少的支出是费用性支出。X
Y以应付票据去偿付购买材料的费用,是成本性支出。X
Y原材料分工序一次投入与原材料在每道工序陆续投入,其完工率的计算方法是完全一致的。X
Y运用连环替代法进行分析,即使随意改变各构成因素的替换顺序,各因素的影响结果加总后仍等于指标的总差异,因此更换各因索替换顺序,不会影响分析的结果。(×)
Z在产品品种规格繁多的情况下,应该采用分类法计算产品成本。对
Z直接生产费用就是直接计人费用。X
Z逐步结转分步法也称为计列半成品分步法。√
A按年度计划分配率分配制造费用,“制造费用”账户月末(可能有月末余额/可能有借方余额/可能有贷方余额/可能无月末余额)。
A按年度计划分配率分配制造费用的方法适用于(季节性生产企业)
7
展开阅读全文