收藏 分销(赏)

参数方程和极坐标方程知识点归纳.doc

上传人:精**** 文档编号:2377438 上传时间:2024-05-29 格式:DOC 页数:4 大小:210.81KB
下载 相关 举报
参数方程和极坐标方程知识点归纳.doc_第1页
第1页 / 共4页
参数方程和极坐标方程知识点归纳.doc_第2页
第2页 / 共4页
参数方程和极坐标方程知识点归纳.doc_第3页
第3页 / 共4页
参数方程和极坐标方程知识点归纳.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题九:坐标系与参数方程1、平面直角坐标系中的伸缩变换设点是平面直角坐标系中的任意一点,在变换的作用下,点对应到点,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。2、极坐标系的概念M在平面内取一个定点,叫做极点;自极点引一条射线叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。rqO图1点的极坐标:设是平面内一点,极点与点的距离叫做点的极径,记为;以极轴为始边,射线为终边的叫做点的极角,记为。有序数对叫做点的极坐标,记为. 注:极坐标与表示同一个点。极点的坐标为.若,则,规定点与点关于极点对称,即与表示同一点。如果规定,那么除

2、极点外,平面内的点可用唯一的极坐标表示(即一一对应的关系);同时,极坐标表示的点也是唯一确定的。极坐标与直角坐标都是一对有序实数确定平面上一个点,在极坐标系下,一对有序实数、对应惟一点P(,),但平面内任一个点P的极坐标不惟一一个点可以有无数个坐标,这些坐标又有规律可循的,P(,)(极点除外)的全部坐标为(,)或(,),(Z)极点的极径为0,而极角任意取若对、的取值范围加以限制则除极点外,平面上点的极坐标就惟一了,如限定0,0或0,等极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的即一个点的极坐标是不惟一的 3、极坐标与直角坐标的互化rqqrco

3、s=xqrsin=y222r=+yx)0(tan=xxyqyyxOMHN(直极互化 图)设是平面内任意一点,它的直角坐标是,极坐标是,从图中可以得出:4、简单曲线的极坐标方程圆的极坐标方程以极点为圆心,为半径的圆的极坐标方程是 ;(如图1)以为圆心, 为半径的圆的极坐标方程是 ;(如图2)以为圆心,为半径的圆的极坐标方程是;(如图4)直线的极坐标方程过极点的直线的极坐标方程是和. (如图1)过点,且垂直于极轴的直线l的极坐标方程是. 化为直角坐标方程为.(如图2)过点且平行于极轴的直线l的极坐标方程是. 化为直角坐标方程为.(如图4)5、柱坐标系与球坐标系柱坐标:空间点的直角坐标与柱坐标的变换

4、关系为:.球坐标系空间点直角坐标与球坐标的变换关系:.6、参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数 并且对于的每一个允许值,由这个方程所确定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数的变数叫做参变数,简称参数。相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。7、常见曲线的参数方程(1)圆的参数方程为 (为参数);(2)椭圆的参数方程为 (为参数);椭圆的参数方程为 (为参数);(3)双曲线的参数方程 (为参数);双曲线的参数方程 (为参数);(4)抛物线参数方程 为参数,);参数的几何意义:抛物线上除顶点外的任意一点与原点连线的斜率的倒数.(6)过定点、倾斜角为的直线的参数方程(为参数).8、参数方程与普通方程之间的互化在建立曲线的参数方程时,要注明参数及参数的取值范围。在参数方程与普通方程的互化中,必须使的取值范围保持一致.参数方程化为普通方程的关键是消参数,并且要保证等价性。若不可避免地破坏了同解变形,则一定要通过。根据t的取值范围导出的取值范围.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服