收藏 分销(赏)

高中数学复合函数测验题.doc

上传人:w****g 文档编号:2325829 上传时间:2024-05-28 格式:DOC 页数:6 大小:629.50KB
下载 相关 举报
高中数学复合函数测验题.doc_第1页
第1页 / 共6页
高中数学复合函数测验题.doc_第2页
第2页 / 共6页
高中数学复合函数测验题.doc_第3页
第3页 / 共6页
高中数学复合函数测验题.doc_第4页
第4页 / 共6页
高中数学复合函数测验题.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、第一篇、复合函数问题一、复合函数定义:设y=f(u)的定义域为A,u=g(x)的值域为B,若AB,则y关于x函数的y=fg(x)叫做函数f与g的复合函数,u叫中间量.二、复合函数定义域问题:(一)例题剖析:(1)、已知的定义域,求的定义域思路:设函数的定义域为D,即,所以的作用范围为D,又f对作用,作用范围不变,所以,解得,E为的定义域。例1.设函数的定义域为(0,1),则函数的定义域为_。解析:函数的定义域为(0,1)即,所以的作用范围为(0,1)又f对lnx作用,作用范围不变,所以解得,故函数的定义域为(1,e)例2. 若函数,则函数的定义域为_。解析:由,知即f的作用范围为,又f对f(x

2、)作用所以,即中x应满足(2)、已知的定义域,求的定义域思路:设的定义域为D,即,由此得,所以f的作用范围为E,又f对x作用,作用范围不变,所以为的定义域。例3. 已知的定义域为,则函数的定义域为_。解析:的定义域为,即,由此得即函数的定义域为例4. 已知,则函数的定义域为_。解析:先求f的作用范围,由,知的定义域为(3)、已知的定义域,求的定义域思路:设的定义域为D,即,由此得,的作用范围为E,又f对作用,作用范围不变,所以,解得,F为的定义域。例5. 若函数的定义域为,则的定义域为_。解析:的定义域为,即,由此得的作用范围为又f对作用,所以,解得即的定义域为(二)同步练习:1、已知函数的定

3、义域为,求函数的定义域。答案:2、已知函数的定义域为,求的定义域。答案:3、已知函数的定义域为,求的定义域。答案:三、复合函数单调性问题(1)引理证明已知函数.若在区间)上是减函数,其值域为(c,d),又函数在区间(c,d)上是减函数,那么,原复合函数在区间)上是增函数.证明:在区间)内任取两个数,使因为在区间)上是减函数,所以,记, 即因为函数在区间(c,d)上是减函数,所以,即,故函数在区间)上是增函数.(2)复合函数单调性的判断复合函数的单调性是由两个函数共同决定。为了记忆方便,我们把它们总结成一个图表:增 减 增 减 增 减 增 减 减 增 以上规律还可总结为:“同向得增,异向得减”或

4、“同增异减”.(3)、复合函数的单调性判断步骤: 确定函数的定义域; 将复合函数分解成两个简单函数:与。 分别确定分解成的两个函数的单调性; 若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数为增函数; 若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数为减函数。(4)例题演练例1、 求函数的单调区间,并用单调定义给予证明解:定义域 。单调减区间是 设 则 = 又底数 即 在上是减函数同理可证:在上是增函数例2、讨论函数的单调性.解由得函数的定义域为则当时,若,为增函数,为增函数.若,为减函数.为减函数。当时,若,则为减函数

5、,若,则为增函数.(5)同步练习:1函数y(x23x2)的单调递减区间是()A(,1)B(2,)C(,)D(,)答案:B2找出下列函数的单调区间.(1);(2)答案:(1)在上是增函数,在上是减函数。(2)单调增区间是,减区间是。3、讨论的单调性。答案:时为增函数,时,为增函数。变式练习一、选择题1函数f(x)的定义域是()A(1,)B(2,)C(,2)D解析:要保证真数大于0,还要保证偶次根式下的式子大于等于0,所以解得1x2答案:D2函数y(x23x2)的单调递减区间是()A(,1)B(2,)C(,)D(,)解析:先求函数定义域为(o,1)(2,),令t(x)x23x2,函数t(x)在(,

6、1)上单调递减,在(2,)上单调递增,根据复合函数同增异减的原则,函数y(x23x2)在(2,)上单调递减答案:B3若2(x2y)xy,则的值为()A4B1或C1或4D错解:由2(x2y)xy,得(x2y)2xy,解得x4y或xy,则有或1答案:选B正解:上述解法忽略了真数大于0这个条件,即x2y0,所以x2y所以xy舍掉只有x4y答案:D4若定义在区间(1,0)内的函数f(x)(x1)满足f(x)0,则a的取值范围为()A(0,)B(0,)C(,)D(0,)解析:因为x(1,0),所以x1(0,1)当f(x)0时,根据图象只有02al,解得0a(根据本节思维过程中第四条提到的性质)答案:A5

7、函数y(1)的图象关于()Ay轴对称Bx轴对称C原点对称D直线yx对称解析:y(1),所以为奇函数形如y或y的函数都为奇函数答案:C二、填空题已知y(2ax)在0,1上是x的减函数,则a的取值范围是_解析:a0且a1(x)2ax是减函数,要使y(2ax)是减函数,则a1,又2ax0a(0x1)a2,所以a(1,2)答案:a(1,2)7函数f(x)的图象与g(x)()x的图象关于直线yx对称,则f(2xx2)的单调递减区间为_解析:因为f(x)与g(x)互为反函数,所以f(x)x则f(2xx2)(2xx2),令(x)2xx20,解得0x2(x)2xx2在(0,1)上单调递增,则f(x)在(0,1

8、)上单调递减;(x)2xx2在(1,2)上单调递减,则f(x)在1,2)上单调递增所以f(2xx2)的单调递减区间为(0,1)答案:(0,1)8已知定义域为R的偶函数f(x)在0,上是增函数,且f()0,则不等式f(log4x)的解集是_解析:因为f(x)是偶函数,所以f()f()0又f(x)在0,上是增函数,所以f(x)在(,0)上是减函数所以f(log4x)0log4x或log4x解得x2或0x答案:x2或0x三、解答题10设函数f(x),(1)求函数f(x)的定义域;(2)判断函数f(x)的单调性,并给出证明;(3)已知函数f(x)的反函数f1(x),问函数yf1(x)的图象与x轴有交点

9、吗?若有,求出交点坐标;若无交点,说明理由解:(1)由3x50且0,解得x且x取交集得x(2)令(x)3x5,随着x增大,函数值减小,所以在定义域内是减函数;1随着x增大,函数值减小,所以在定义域内是减函数又ylgx在定义域内是增函数,根据复合单调性可知,y是减函数,所以f(x)是减函数(3)因为直接求f(x)的反函数非常复杂且不易求出,于是利用函数与其反函数之间定义域与值域的关系求解设函数f(x)的反函数f1(x)与工轴的交点为(x0,0)根据函数与反函数之间定义域与值域的关系可知,f(x)与y轴的交点是(0,x0),将(0,x0)代入f(x),解得x0所以函数yf1(x)的图象与x轴有交点,交点为(,0)。一指数函数与对数函数同底的指数函数与对数函数互为反函数;(二)主要方法:1解决与对数函数有关的问题,要特别重视定义域;2指数函数、对数函数的单调性决定于底数大于1还是小于1,要注意对底数的讨论;3比较几个数的大小的常用方法有:以和为桥梁;利用函数的单调性;作差(三)例题分析:例1(1)若,则,从小到大依次为;(2)若,且,都是正数,则,从小到大依次为;(3)设,且(,),则与的大小关系是()()()()()解:(1)由得,故(2)令,则,;同理可得:,(3)取,知选()6 / 6

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服