资源描述
<p>圆的总结
集合:
圆:圆可以看作是到定点的距离等于定长的点的集合;
圆的外部:可以看作是到定点的距离大于定长的点的集合;
圆的内部:可以看作是到定点的距离小于定长的点的集合
轨迹:
1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;
2、到线段两端点距离相等的点的轨迹是:线段的中垂线;
3、到角两边距离相等的点的轨迹是:角的平分线;
4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线
点与圆的位置关系:
点在圆内 d</p><r d="">r 点A在圆外
直线与圆的位置关系:
直线与圆相离 d>r 无交点
直线与圆相切 d=r 有一个交点
直线与圆相交 d<r :="" d="">R+r
外切(图2) 有一个交点 d=R+r
相交(图3) 有两个交点 R-r<d<R+r
内切(图4) 有一个交点 d=R-r
内含(图5) 无交点 d<r-r :="" cd="" ce="DE" aob="2∠ACB" ab="" oc="OA=OB" c="90°" bam="∠BCA" bad="180°" d="" dae="∠C" oa="" pa="PB" bpa="" p="" pb="PC·PA" od:bd:ob="(2)正四边形" oe="" :ae:oa="(3)正六边形" ab:ob:oa="弧长、扇形面积公式">r
点在圆上
d=r
点在圆内
d<r d="">r
相切
d=r
相交
d<r d="">R+r
外切
d=R+r
相交
R-r<d<R+r
内切
d=R-r
内含
d<R-r
五、正多边形和圆
1、有关概念
正多边形的中心、半径、中心角及其度数、边心距
2、方法思路:构造等腰(等边)三角形、直角三角形,在三角形中求线、角、面积。
六、圆的有关线的长和面积。
1、圆的周长、弧长
C=2r, l=
2、圆的面积、扇形面积、圆锥的侧面积和全面积
S圆=r2 ,
S扇形= ,或 S扇形= (即S扇形==)
S圆锥=
3、求面积的方法
直接法→由面积公式直接得到
间接法→即:割补法(和差法)→进行等量代换
与 圆 有 关 的 计 算
一、周长:设圆的周长为C,半径为r,扇形的弧长为l,扇形的圆心角为n.
① 圆的周长:C=2πR;②扇形的弧长:。
例题1.(05崇文练习一)某小区建有如图所示的绿地,图中4个半圆,邻近的两个半圆相切。两位老人同时出发,以相同的速度由A处到B处散步,甲老人沿的线路行走,乙老人沿的线路行走,则下列结论正确的是( )
(A)甲老人先到达B处 (B)乙老人先到达B处(C)甲、乙两老人同时到达B处(D)无法确定
例题2.如图,△ABC是正三角形,曲线CDEF…叫做正三角形的“渐开线”,其中、、…的圆心依次按A、B、C循环,将它们依次平滑相连接。如果AB=1,试求曲线CDEF的长。
例题3.(06芜湖)已知如图,线段AB∥CD,∠CBE=600,且AB=60cm,BC=40cm,CD=40cm,⊙O的半径为10cm,从A到D的表面很粗糙,求⊙O从A滚动到D,圆心O所经过的距离。
例题4.如图,一个等边三角形的边长和与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边作无滑动旋转直至回到原出发位置时,则这个圆共转了( )圈。 A 4 B 3 C 5 D 3.56.
例题5.(08大兴二模)如图,一个人握着板子的一端,另一端放在圆柱上,某人沿水平方向推动板子带动圆柱向前滚动,假设滚动时圆柱与地面无滑动,板子与圆柱也没有滑动.已知板子上的点B(直线与圆柱的横截面的切点)与手握板子处的点C间的距离BC的长为L,当手握板子处的点C随着圆柱的滚动运动到板子与圆柱横截面的切点时,人前进了_________.
例题6.(08房山二模)如图,∠ACB=,半径为2的⊙0切BC于点C,若将⊙O在CB上向右滚动,则当滚动到⊙O与CA也相切时,圆心O移动的水平距离为.
二、面积:设圆的面积为S,半径为r,扇形的面积为,弧长为l.
① 圆的面积: ②扇形的面积: ③弓形面积:
例题1.(05丰台练习二)如图,△ABC内接于⊙O,BD是⊙O的直径,如果∠A=120°,CD=2,则扇形OBAC的面积是____________。
例题2.(江西省)如图,⊙A、⊙B、⊙C两不相交,且半径半径都是0.5cm.图中的三个扇形(即三个阴影部分)的面积之和为( )
A cm2 B cm2 C cm2 D cm2
例题3.(08大兴)北京市一居民小区为了迎接2008年奥运会,计划将小区内的一块平行四边形ABCD场地进行绿化,如图阴影部分为绿化地,以A、B、C、D为圆心且半径均为的四个扇形的半径等于图中⊙O的直径,已测得,则绿化地的面积为( ) A. 18π B. 36π C. π D. π
例题4.如图,⊙O的半径为20,B、C为半圆的两个三等分点,A为半圆的直径的一个端点,求阴影部分的面积。
例题5.(08房山)如图1是一种边长为60cm的正方形地砖图案,其图案设计是:①三等分AD(AB=BC=CD)②以点A为圆心,以AB长为半径画弧,交AD于B、交AG于E;③再分别以B、E为圆心,AB长为半径画弧,交AD于C、交AG于F两弧交于H;④用同样的方法作出右上角的三段弧.图2是用图1所示的四块地砖铺在一起拼成的大地砖,则图2中的阴影部分的面积是_______cm2(结果保留).
例题6. (08西城)如图,在中,,AB=AC=2,若以AB为直径的圆交BC于点D,则阴影部分的面积是 .
例题7. (08朝阳)已知:如图,三个半径均为1 m的铁管叠放在一起,两两相外切,切点分别为C、D、E,直线MN(地面)分别与⊙O2、⊙O3相切于点A、B.(1)求图中阴影部分的面积;(2)请你直接写出图中最上面的铁管(⊙O1)的最低点P到地面MN的距离是______________m.
例题8.(08海淀)如图,一种底面直径为8厘米,高15厘米的茶叶罐,现要设计一种可以放三罐的包装盒,请你估算包装用的材料为多少(边缝忽略不计)。
三、侧面展开图:
①圆柱侧面展开图是 形,它的长是底面的 ,高是这个圆柱的 ;
②圆锥侧面展开图是 形,它的半径是这个圆锥的 ,它的弧长是这个圆锥的底面的 。
例题1.(05丰台)圆柱的高为6cm,它的底面半径为4cm,则这个圆柱的侧面积是( )
A. B. C. D.
例题2.(05丰台)如果圆锥的底面半径为4cm,高为3cm,那么它的侧面积是( )
A. B. C. D.
例题3.(05海淀)如图圆锥两条母线的夹角为,高为12cm,则圆锥侧面积为______,底面积为______。
例题4.(05朝阳)如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是( )
A. B. C. D.
例题5.如果一个圆锥的轴截面是等边三角形,它的边长为4cm,那么它的全面积是( )
A. 8πcm2 B. 10π cm2 C. 12πcm2 D. 9πcm2
四、正多边形计算的解题思路:
正多边形等腰三角形直角三角形。
可将正多边形的中心与一边组成等腰三角形,再用解直角三角形的知识进行求解。
例题1.(05朝阳)正n边形的一个内角是,则边数n是( )
A. 4 B. 6 C. 8 D. 10
例题2.如图,要把边长为6的正三角形纸板剪去三个三角形,得到正六边形,它的边长为__________。
例题3.如图扇形的圆心角为直角,正方形OCDE内接于扇形,点C、D、E分别在OA、OB、上,过点A作AF⊥ED,交ED的延长线于点F,垂足为F。若正方形的边长为1,则阴影部分的面积为______。(福建福州)
6 / 6</r></r></r-r></r></r>
展开阅读全文