1、反比例函数一、选择题1(2016黑龙江大庆)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1x2x3,y2y1y3,则下列关系式不正确的是()Ax1x20 Bx1x30 Cx2x30 Dx1+x20【考点】反比例函数图象上点的坐标特征【分析】根据反比例函数y=和x1x2x3,y2y1y3,可得点A,B在第三象限,点C在第一象限,得出x1x20x3,再选择即可【解答】解:反比例函数y=中,20,在每一象限内,y随x的增大而减小,x1x2x3,y2y1y3,点A,B在第三象限,点C在第一象限,x1x20x3,x1x20,故选A【点评】本题考查了反比例函数图象
2、上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大2(2016湖北十堰)如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CDOB于点D,若点C,D都在双曲线y=上(k0,x0),则k的值为()A25B18C9D9【考点】反比例函数图象上点的坐标特征;平行线的性质;等边三角形的性质【分析】过点A作AEOB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E的坐标,再由CDOB,AEOB可找出CDAE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、
3、n的二元一次方程组,解方程组即可得出结论【解答】解:过点A作AEOB于点E,如图所示OAB为边长为10的正三角形,点A的坐标为(10,0)、点B的坐标为(5,5),点E的坐标为(,)CDOB,AEOB,CDAE,设=n(0n1),点D的坐标为(,),点C的坐标为(5+5n,55n)点C、D均在反比例函数y=图象上,解得:故选C【点评】本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D、C的坐标本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键3. (2016新疆)已知A(x1,
4、y1),B(x2,y2)是反比例函数y=(k0)图象上的两个点,当x1x20时,y1y2,那么一次函数y=kxk的图象不经过()A第一象限 B第二象限 C第三象限 D第四象限【考点】反比例函数图象上点的坐标特征;一次函数图象与系数的关系【分析】首先根据x1x20时,y1y2,确定反比例函数y=(k0)中k的符号,然后再确定一次函数y=kxk的图象所在象限【解答】解:当x1x20时,y1y2,k0,k0,一次函数y=kxk的图象经过第一、三、四象限,不经过第二象限,故选:B【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k的符号4. (2016
5、云南)位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点若EO=EF,EOF的面积等于2,则k=()A4 B2 C1 D2【考点】反比例函数系数k的几何意义【分析】此题应先由三角形的面积公式,再求解k即可【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点若EO=EF,EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k5. (2016四川达州3分)下列说法中不正确的是()A函数y=2x的图象经过原点B函数y=的图象位于第一、三象
6、限C函数y=3x1的图象不经过第二象限D函数y=的值随x的值的增大而增大【考点】正比例函数的性质;一次函数的性质;反比例函数的性质【分析】分别利用正比例函数以及反比例函数的定义分析得出答案【解答】解:A、函数y=2x的图象经过原点,正确,不合题意;B、函数y=的图象位于第一、三象限,正确,不合题意;C、函数y=3x1的图象不经过第二象限,正确,不合题意;D、函数y=的值,在每个象限内,y随x的值的增大而增大,故错误,符合题意故选:D6. (2016四川乐山3分)如图5,在反比例函数的图象上有一动点,连接并延长交图象的另一支于点,在第一象限内有一点,满足,当点运动时,点始终在函数的图象上运动,若
7、,则的值为答案:D解析:连结CO,由双曲线关于原点对称,知AOBO,又CACB,所以,COAB,因为,所以,2作AEx轴,CDx轴于E、D点。则有OCDOEA,所以,设C(m,n),则有A(),所以,解得:k87. (2016四川凉山州4分)二次函数y=ax2+bx+c(a0)的图象如图,则反比例函数与一次函数y=bxc在同一坐标系内的图象大致是()ABCD【考点】反比例函数的图象;一次函数的图象;二次函数的图象【分析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论【解答】解:观察二次函数图象可知:开口向上,a0;对称轴大于0,0,b0;二次函数
8、图象与y轴交点在y轴的正半轴,c0反比例函数中k=a0,反比例函数图象在第二、四象限内;一次函数y=bxc中,b0,c0,一次函数图象经过第二、三、四象限故选C8. (2016,湖北宜昌,15,3分)函数y=的图象可能是()A B C D【考点】反比例函数的图象【分析】函数y=是反比例y=的图象向左移动一个单位,根据反比例函数的图象特点判断即可【解答】解:函数y=是反比例y=的图象向左移动一个单位,即函数y=是图象是反比例y=的图象双曲线向左移动一个单位故选C【点评】此题是反比例函数的图象,主要考查了反比例函数的图象是双曲线,掌握函数图象的平移是解本题的关键9. (2016吉林长春,8,3分)
9、如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x0)的图象上,当m1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、DQD交PA于点E,随着m的增大,四边形ACQE的面积()A减小 B增大 C先减小后增大 D先增大后减小【考点】反比例函数系数k的几何意义【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断【解答】解:AC=m1,CQ=n,则S四边形ACQE=ACCQ=(m1)n=mnnP(1,4)、Q(m,n)在函数y=(x0)的图象上,mn=k=4(常数)S四边形ACQE=
10、ACCQ=4n,当m1时,n随m的增大而减小,S四边形ACQE=4n随m的增大而增大故选B【点评】本题考查了二次函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键10. (2016兰州,2,4分)反比例函数的图像在()。(A)第一、二象限(B)第一、三象限(C)第二、三象限(D)第二、四象限【答案】B【解析】反比例函数 的图象受到𝑘的影响,当 k 大于 0 时,图象位于第一、三象限,当 k小于 0 时,图象位于第二、四象限,本题中 k 2 大于 0,图象位于第一、三象限,所以答案选 B。【考点】反比例函数的系数 k 与图象的关系【考点】:反比例函数的性质 1
11、1.(2016广东广州)一司机驾驶汽车从甲地去乙地,他以80千米小时的平均速度用了4小时到达乙地。当他按照原路返回时,汽车的速度v 千米小时与时间t小时的函数关系是( )A、v=320t B、 C、v=20t D、难易 较易考点 反比例函数,行程问题解析 由路程速度时间,可以得出甲乙两地的距离为320千米,返程时路程不变,由路程速度时间,得 速度路程时间,所以参考答案 B12.(2016广西贺州)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A B C D【考点】二次函数的图象;一次函数的图象;反比例函数的图象【专题】压轴
12、题【分析】根据二次函数图象与系数的关系确定a0,b0,c0,根据一次函数和反比例函数的性质确定答案【解答】解:由抛物线可知,a0,b0,c0,一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,故选:B【点评】本题考查的是二次函数、一次函数和反比例函数的图象与系数的关系,掌握二次函数、一次函数和反比例函数的性质是解题的关键13(2016江苏连云港)姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质甲:函数图象经过第一象限;乙:函数图象经过第三象限;丙:在每一个象限内,y值随x值的增大而减小根据他们的描述,姜老师给出的这个函数表达式可能是
13、()Ay=3xBCDy=x2【分析】可以分别写出选项中各个函数图象的特点,与题目描述相符的即为正确的,不符的就是错误的,本题得以解决【解答】解:y=3x的图象经过一三象限过原点的直线,y随x的增大而增大,故选项A错误;的图象在一、三象限,在每个象限内y随x的增大而减小,故选项B正确;的图象在二、四象限,故选项C错误;y=x2的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D错误;故选B【点评】本题考查反比例函数的性质、正比例函数的性质、二次函数的性质,解题的关键是明确它们各自图象的特点和性质14(2016江苏苏州)已知点A(2,y1)、B(4,y2)都在反比例函数y=(k0)的图象上,
14、则y1、y2的大小关系为()Ay1y2By1y2Cy1=y2D无法确定【考点】反比例函数图象上点的坐标特征【分析】直接利用反比例函数的增减性分析得出答案【解答】解:点A(2,y1)、B(4,y2)都在反比例函数y=(k0)的图象上,每个象限内,y随x的增大而增大,y1y2,故选:B15(2016辽宁沈阳)如图,在平面直角坐标系中,点P是反比例函数y=(x0)图象上的一点,分别过点P作PAx轴于点A,PBy轴于点B若四边形OAPB的面积为3,则k的值为()A3 B3 C D【考点】反比例函数系数k的几何意义【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|再由函
15、数图象所在的象限确定k的值即可【解答】解:点P是反比例函数y=(x0)图象上的一点,分别过点P作PAx轴于点A,PBy轴于点B若四边形OAPB的面积为3,矩形OAPB的面积S=|k|=3,解得k=3又反比例函数的图象在第一象限,k=3故选A【点评】本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义 二、填空题1(2016湖北鄂州)如图,已知直线 与x轴、y轴相交于P、Q两点,与y=的图像相交于A(2,m)、B(1,n)两点,连接OA、OB. 给出下列结论:
16、k1k20;m+n=0; SAOP= SBOQ;不等式k1x+b的解集是x2或0x1,其中正确的结论的序号是 .【考点】反比例函数,一次函数,不等式【分析】由直线 的图像在二、四象限,知k10;y=的图像在二、四象限,知k20;因此k1k20,所以错误;A,B两点在y=的图像上,故将A(2,m)、B(1,n)代入,得m=,n= k2;从而得出m+n=0,故正确;令x=0,则y=b,所以Q(0,b),则SBOQ=1b= -b;将A(2,m)、B(1,n)分别代入,解得k1=,所以y=x+b;令y=0,则x=-b,所以P(-b,0),则SAOP=|-2|-b= -b;所以SAOP= SBOQ,故正
17、确;由图像知,在A点左边,不等式k1x+b的图像在的图像的上边,故满足k1x+b;在Q点与A点之间,不等式k1x+b的图像在的图像的上边,故满足k1x+b;因此不等式k1x+b的解集是x2或0x1. 故正确.【解答】解:由直线 的图像在二、四象限,知k10;双曲线y=的图像在二、四象限,知k20;k1k20;错误;A,B两点在y=的图像上,故将A(2,m)、B(1,n)代入,得m=,n= k2;将n= k2代入m=中,得m=,即m+n=0.正确;令x=0,则y=b,所以Q(0,b),则SBOQ=1b= -b;将A(2,m)、B(1,n)分别代入,解得k1=,y=x+b;令y=0,则x=-b,P
18、(-b,0),SAOP=|-2|-b= -b;SAOP= SBOQ.正确;由图像知,在A点左边,不等式k1x+b的图像在的图像的上边,故满足k1x+b;在Q点与A点之间,不等式k1x+b的图像在的图像的上边,故满足k1x+b;因此不等式k1x+b的解集是x2或0x0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。本题中要注意中的b0,不等式k1x+b的解集可以直接从图中得出. 2. (2016四川成都4分)已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=的图象上,且x1x2
19、0,则y1y2(填“”或“”)【考点】反比例函数图象上点的坐标特征;反比例函数的性质【分析】根据一次函数的系数k的值可知,该函数在x0内单调递减,再结合x1x20,即可得出结论【解答】解:在反比例函数y=中k=20,该函数在x0内单调递减x1x20,y1y2故答案为:3. (2016四川达州3分)如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=(x0)的图象经过点D,且与边BC交于点E,则点E的坐标为(2,7)【考点】反比例函数图象上点的坐标特征【分析】首先过点D作DFx轴于点F,易证得AOBDFA,然后由相似三角形的
20、对应边成比例,求得点D的坐标,即可求得反比例函数的解析式,再利用平移的性质求得点C的坐标,继而求得直线BC的解析式,则可求得点E的坐标【解答】解:过点D作DFx轴于点F,则AOB=DFA=90,OAB+ABO=90,四边形ABCD是矩形,BAD=90,AD=BC,OAB+DAF=90,ABO=DAF,AOBDFA,OA:DF=OB:AF=AB:AD,AB:BC=3:2,点A(3,0),B(0,6),AB:AD=3:2,OA=3,OB=6,DF=2,AF=4,OF=OA+AF=7,点D的坐标为:(7,2),反比例函数的解析式为:y=,点C的坐标为:(4,8),设直线BC的解析式为:y=kx+b,
21、则,解得:,直线BC的解析式为:y=x+6,联立得:或(舍去),点E的坐标为:(2,7)故答案为:(2,7)4. (2016四川广安3分)若反比例函数y=(k0)的图象经过点(1,3),则第一次函数y=kxk(k0)的图象经过一、二、四象限【考点】反比例函数图象上点的坐标特征;一次函数的图象【分析】由题意知,k=1(3)=30,所以一次函数解析式为y=3x+3,根据k,b的值判断一次函y=kxk的图象经过的象限【解答】解:反比例函数y=(k0)的图象经过点(1,3),k=1(3)=30,一次函数解析式为y=3x+3,根据k、b的值得出图象经过一、二、四象限故答案为:一、二、四5. (2016兰
22、州,18,4分)双曲线在每个象限内,函数值 y 随 x 的增大而增大,则 m 的取值范围是.【答案】 m 1【解析】根据题意 m-10,则 m (填“”或“=”或“”)考点:反比函数的增减性分析:由反比函数m0,则图象在第二四象限分别都是y随着x的增大而增大 m0,m-10,m-3m-3,从而比较y的大小解答:在反比函数中,m0,m-10,m-3m-3,所以 14(2016上海)函数y=的定义域是x2【考点】函数自变量的取值范围【分析】直接利用分式有意义的条件得出答案【解答】解:函数y=的定义域是:x2故答案为:x2【点评】此题主要考查了函数自变量的取值范围,正确把握相关性质是解题关键15(2
23、016上海)已知反比例函数y=(k0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是k0【考点】反比例函数的性质【分析】直接利用当k0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,进而得出答案【解答】解:反比例函数y=(k0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,k的取值范围是:k0故答案为:k0【点评】此题主要考查了反比例函数的性质,正确记忆增减性是解题关键16(2016江苏无锡)若点A(1,3),B(m,3)在同一反比例函
24、数的图象上,则m的值为1【考点】反比例函数图象上点的坐标特征【分析】由A、B点的坐标结合反比例函数图象上点的坐标特征即可得出关于m的一元一次方程,解方程即可得出结论【解答】解:点A(1,3),B(m,3)在同一反比例函数的图象上,1(3)=3m,解得:m=1故答案为:117(2016江苏省扬州如图,点A在函数y=(x0)的图象上,且OA=4,过点A作ABx轴于点B,则ABO的周长为2+4【考点】反比例函数图象上点的坐标特征【分析】由点A在反比例函数的图象上,设出点A的坐标,结合勾股定理可以表现出OA2=AB2+OB2,再根据反比例函数图象上点的坐标特征可得出ABOB的值,根据配方法求出(AB+
25、OB)2,由此即可得出AB+OB的值,结合三角形的周长公式即可得出结论【解答】解:点A在函数y=(x0)的图象上,设点A的坐标为(n,)(n0)在RtABO中,ABO=90,OA=4,OA2=AB2+OB2,又ABOB=n=4,(AB+OB)2=AB2+OB2+2ABOB=42+24=24,AB+OB=2,或AB+OB=2(舍去)CABO=AB+OB+OA=2+4故答案为:2+418(2016呼和浩特)已知函数y=,当自变量的取值为1x0或x2,函数值y的取值y1或y0【考点】反比例函数的性质【分析】画出图形,先计算当x=1和x=2时的对应点的坐标,并描出这两点,根据图象写出y的取值【解答】解
26、:当x=1时,y=1,当x=2时,y=,由图象得:当1x0时,y1,当x2时,y0,故答案为:y1或y019(2016大连,10,3分)若反比例函数y=的图象经过点(1,6),则k的值为【考点】反比例函数图象上点的坐标特征【分析】直接把点(1,6)代入反比例函数y=,求出k的值即可【解答】解:反比例函数y=的图象经过点(1,6),k=1(6)=6故答案为:6【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键三、解答题1(2016黑龙江大庆)如图,P1、P2是反比例函数y=(k0)在第一象限图象上的两点,点A1的坐标为(4,0)
27、若P1OA1与P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点(1)求反比例函数的解析式(2)求P2的坐标根据图象直接写出在第一象限内当x满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值【考点】反比例函数与一次函数的交点问题;等腰直角三角形【分析】(1)先根据点A1的坐标为(4,0),P1OA1为等腰直角三角形,求得P1的坐标,再代入反比例函数求解;(2)先根据P2A1A2为等腰直角三角形,将P2的坐标设为(4+a,a),并代入反比例函数求得a的值,得到P2的坐标;再根据P1的横坐标和P2的横坐标,判断x的取值范围【解答】解:(1)过点P1作P1Bx轴,垂
28、足为B点A1的坐标为(4,0),P1OA1为等腰直角三角形OB=2,P1B=OA1=2P1的坐标为(2,2)将P1的坐标代入反比例函数y=(k0),得k=22=4反比例函数的解析式为(2)过点P2作P2Cx轴,垂足为CP2A1A2为等腰直角三角形P2C=A1C设P2C=A1C=a,则P2的坐标为(4+a,a)将P2的坐标代入反比例函数的解析式为,得a=,解得a1=,a2=(舍去)P2的坐标为(,)在第一象限内,当2x2+时,一次函数的函数值大于反比例函数的值【点评】本题主要考查了反比例函数与一次函数的交点问题,解决问题的关键是根据等腰直角三角形的性质求得点P1和P2的坐标等腰直角三角形是一种特
29、殊的三角形,具备等腰三角形和直角三角形的所有性质2. (2016湖北黄冈)(满分8分)如图,已知点A(1, a)是反比例函数y= -的图像上一点,直线y= -x+与反比例函数y= -的图像在第四象限的交点为B.(1)求直线AB的解析式;(2)动点P(x, o)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.(第2题)【考点】反比例函数,一次函数,最值问题.【分析】(1)因为点A(1, a)是反比例函数y= -的图像上一点,把A(1, a)代入y=中, 求出a的值,即得点A的坐标;又因为直线y= -x+与反比例函数y= -的图像在第四象限的交点为B,可求出点B的坐标;设直
30、线AB的解析式为y=kx+b,将A,B的坐标代入即可求出直线AB的解析式;(2) 当两点位于直线的同侧时,直接连接两点并延长与直线相交,则两线段的差的绝对值最大。连接A,B,并延长与x轴交于点P,即当P为直线AB与x轴的交点时,PAPB最大.【解答】解:(1)把A(1, a)代入y=中,得a=3. 1分 A(1, 3). .2分 又B,D是y= x+与y=的两个交点,3分 B(3, 1). .4分 设直线AB的解析式为y=kx+b, 由A(1, 3),B(3, 1),解得 k=1,b=4.5分 直线AB的解析式为y=x4. .6分 (2)当P为直线AB与x轴的交点时,PAPB最大7分 由y=0, 得x=4, P(4, 0). .8分3. (2016湖北咸宁)(本题满分8分)如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图像交于点A(m,2),将直