1、2022版高考数学一轮复习 课时质量评价16 导数与函数的单调性新人教A版2022版高考数学一轮复习 课时质量评价16 导数与函数的单调性新人教A版年级:姓名:课时质量评价(十六)(建议用时:45分钟)A组全考点巩固练1函数f (x)exex,xR的单调递增区间是()A(0,)B(,0)C(,1)D(1,)D解析:由题意知f (x)exe.令f (x)0,解得x1.故选D2若函数f (x)x312x在区间(k1,k1)上不是单调函数,则实数k的取值范围是()A(,31,13,)BC(2,2)D(3,1)(1,3)D解析:由f (x)x312x,得f (x)3x212.令f (x)0,解得x2或
2、x2.只要f (x)0的解有一个在区间(k1,k1)内,函数f (x)在区间(k1,k1)上就不是单调函数,则k12k1或k12k1,解得3k1或1k3.3已知函数f (x)3x2cos x若af (3),bf (2),cf (log27),则a,b,c的大小关系是()Aabc BcbaCbac Dbc0在R上恒成立所以f (x)在R上单调递增因为2log24log2733,所以f (2)f (log27)f (3),即bc2,则f (x)2x4的解集为()A(1,1) B(1,)C(,1) D(,)B解析:由f (x)2x4,得f (x)2x40.设F(x)f (x)2x4,则F(x)f (
3、x)2.因为f (x)2,所以F(x)0在R上恒成立,所以F(x)在R上单调递增又F(1)f (1)2(1)42240,故不等式f (x)2x40等价于F(x)F(1),所以x1.5(2020广东六校联盟第三次联考)函数f (x)的图象的大致形状是()A解析:令x0,得f (0)0,排除C,D,f (x),当x时,f (x)0,当x时,f (x)0,即(x22)ex0.因为ex0,所以x220,解得x0,解得a3,所以实数a的取值范围是(3,0)(0,)8若函数f (x)x2x1在区间上单调递减,则实数a的取值范围是_解析:f (x)x2ax1.因为函数f (x)在区间上单调递减,所以f (x
4、)0在区间上恒成立所以即解得a.所以实数a的取值范围为.9(2019天津卷节选)设函数f (x)excos x,求f (x)的单调区间解:由题意,得f (x)ex(cos xsin x)因此,当x(kZ)时,有sin xcos x,得f (x)0,则f (x)单调递减;当x(kZ)时,有sin x0,则f (x)单调递增所以,f (x)的单调递增区间为(kZ),f (x)的单调递减区间为(kZ)10已知函数f (x)ln x,其中aR,且曲线yf (x)在点(1,f (1)处的切线垂直于直线yx.(1)求a的值;(2)求函数f (x)的单调区间解:(1)对f (x)求导得f (x)(x0)由f
5、 (x)在点(1,f (1)处的切线垂直于直线yx,知f (1)a2,解得a.(2)由(1)知f (x)ln x,则f (x)(x0)令f (x)0,解得x1或x5.因为x1不在f (x)的定义域(0,)内,故舍去当x(0,5)时,f (x)0,故f (x)在(5,)内单调递增综上,f (x)的单调递增区间为(5,),单调递减区间为(0,5)B组新高考培优练11(多选题)若函数yexf (x)(e是自然对数的底数)在f (x)的定义域上单调递增,则称函数f (x)具有M性质下列函数中具有M性质的是()Af (x)2x Bf (x)x2Cf (x)3x Df (x)exAD解析:设函数g(x)e
6、xf (x)对于A,g(x)ex2x,在定义域R上为增函数对于B,g(x)exx2,则g(x)x(x2)ex.由g(x)0得x0,所以g(x)在定义域R上不是增函数对于C,g(x)ex3x在定义域R上是减函数对于D,g(x)e2x,则g(x)2e2x,g(x)0在定义域R上恒成立,即g(x)在定义域R上为增函数故选AD12已知定义在(0,)上的函数f (x)满足xf (x)f (x)0的解集是()A(,ln 2) B(ln 2,)C(0,e2) D(e2,)A解析:令g(x),g(x)0等价为,即g(ex)g(2)故ex2,即xln 2,则所求的解集为(,ln 2)13(多选题)已知函数f (
7、x)xln x,若0x1x2,则()A0Bx1f (x1)x2f (x2)Cx2f (x1)x1f (x2)D当x2x1时,x1f (x1)x2f (x2)x2f (x1)x1f (x2)CD解析:因为f (x)xln x,f (x)ln x1不是恒小于0,所以0不恒成立,故A错误设h(x)f (x)x,则h(x)ln x2不恒大于0,所以x1f (x1)x2f (x2)不恒成立,故 B错误设g(x)ln x,函数g(x)单调递增,所以g(x2)g(x1)所以,即有x1f (x2)x2f (x1),故C正确当x时,ln x1,故f (x)ln x10,函数f (x)xln x,x,单调递增故(
8、x2x1)f (x2)f (x1)x1f (x1)x2f (x2)x2f (x1)x1f (x2)0,即x1f (x1)x2f (x2)x2f (x1)x1f (x2),故D正确故选CD14(多选题)已知定义在R上的函数f (x)满足f (x)f (x),则()Af (2 019)ef (2 020)Bef (2 019)f (2 020)Cf (x)是R上的增函数D若t0,则有f (x)etf (xt)AD解析:由f (x)f (x),得exf (x)exf (x)0,即exf (x)0.所以函数exf (x)为增函数故e2 019f (2 019)e2 020f (2 020),所以f (
9、2 019)ef (2 020)故A正确,B不正确函数exf (x)为增函数时,f (x)不一定为增函数,如ex是增函数,但是减函数,所以C不正确因为函数exf (x)为增函数,所以t0时,有exf (x)extf (xt)故有f (x)etf (xt)成立故D正确故选AD15已知函数f (x)x3mx2nx2的图象过点(1,6),函数g(x)f (x)6x的图象关于y轴对称,则实数m_,f (x)的单调递减区间为_3(0,2)解析:由函数f (x)的图象过点(1,6),得mn3.由f (x)x3mx2nx2,得f (x)3x22mxn.所以g(x)f (x)6x3x2(2m6)xn.因为g(
10、x)的图象关于y轴对称,所以0.所以m3.代入得n0,所以f (x)3x26x3x(x2)由f (x)0,得0x0,函数f (x)在(0,)上单调递增;当a0时,令g(x)ax2(2a2)xa,(2a2)24a24(2a1)当a时,0,f (x)0,函数f (x)在(0,)上单调递减当a0,设x1,x2(x10,且x20.所以,当x(0,x1)时,g(x)0,f (x)0,f (x)0,函数f (x)单调递增;当x(x2,)时,g(x)0,f (x)0,函数f (x)单调递减综上,当a0时,函数f (x)在(0,)上单调递增;当a时,函数f (x)在(0,)上单调递减;当a0时,f (x)在,上单调递减,在上单调递增