收藏 分销(赏)

人教版高中数学选修1-1-3.3.1-函数的单调性与导数--(共15张).ppt

上传人:快乐****生活 文档编号:2047527 上传时间:2024-05-14 格式:PPT 页数:14 大小:295KB
下载 相关 举报
人教版高中数学选修1-1-3.3.1-函数的单调性与导数--(共15张).ppt_第1页
第1页 / 共14页
人教版高中数学选修1-1-3.3.1-函数的单调性与导数--(共15张).ppt_第2页
第2页 / 共14页
人教版高中数学选修1-1-3.3.1-函数的单调性与导数--(共15张).ppt_第3页
第3页 / 共14页
人教版高中数学选修1-1-3.3.1-函数的单调性与导数--(共15张).ppt_第4页
第4页 / 共14页
人教版高中数学选修1-1-3.3.1-函数的单调性与导数--(共15张).ppt_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、1.3.1 1.3.1 函数的单调性与函数的单调性与导数导数 主讲人:陈桂凤主讲人:陈桂凤.一、新课导入一、新课导入-复旧知新复旧知新1.函数的单调性是怎样定义的?函数的单调性是怎样定义的?2.怎样用定义判断函数的单调性?怎样用定义判断函数的单调性?一般地,设函数一般地,设函数f(x)的定义域为的定义域为I:如果对于定义域如果对于定义域I内某个区间内某个区间D上的任意两个自变量的值上的任意两个自变量的值x1,x2,当当x1x2时,都有时,都有f(x1)f(x2),那么就说那么就说f(x)在区间在区间D上是上是增函数增函数;当当x1f(x2),那么就说那么就说f(x)在区间在区间D上是上是减函数

2、减函数;如果函数如果函数y=f(x)在区间在区间D上是增函数或减函数,那么就说函数上是增函数或减函数,那么就说函数y=f(x)在这一区间具有在这一区间具有单调性单调性。区间。区间D叫做函数的叫做函数的单调区间单调区间。(1)取值()取值(2)作差()作差(3)变形()变形(4)定号()定号(5)结论)结论.yx0abc直观地来看直观地来看,如图从如图从a到到b曲线是上升的曲线是上升的,说函数说函数f(x)在区在区间间(a,b)上是上是增函数增函数;从从b到到c曲线是曲线是下降的下降的,说函数说函数f(x)在区间在区间(b,c)上是上是减减函数函数.3.怎样用图形判断函数的单调性?怎样用图形判断

3、函数的单调性?.yx0abc 观察曲线上升的时候观察曲线上升的时候,每一点的切线的斜率的大每一点的切线的斜率的大小小;曲线下降的时候曲线下降的时候,每一点的切线的斜率的大小每一点的切线的斜率的大小,你你发现了什么规律发现了什么规律?.aby=f(x)xoyy=f(x)xoyabf(x)0f(x)0,那么函数那么函数y=f(x)在这个在这个区间内区间内单调递增单调递增;如果在这个区间内如果在这个区间内 0,那么函数那么函数y=f(x)在这个区间内在这个区间内单调递减单调递减.例例 1.已知导函数已知导函数 f(x)的下列信息的下列信息:当当1 x 0;当当 x 4,或或 x 1时时,f(x)0;当当 x=4,或或 x=1时时,f(x)=0。试画出函数试画出函数 f(x)的图象的大致形状的图象的大致形状.解解:当当1 x 0,可知可知 f(x)在此区间内单调递增在此区间内单调递增;当当 x 4,或或 x 1时时,f(x)0,那么函数在这个区间内单调递增;那么函数在这个区间内单调递增;如果如果 f(x)0和和f(x)0;(4)根据根据(3)的结果确认的结果确认f(x)的单调区间。的单调区间。1.函数的单调性与导函数的正负的关系:函数的单调性与导函数的正负的关系:.六、布置作业六、布置作业作业:作业:课本P31 页:习题 A组 第1,2题.谢谢指导.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服