资源描述
七年级培优题
1、如图,在一个正方体的两个面上画了两条对角线AB,AC,那么这两条对角线的夹角等于 度。
2.。.的最小值是_______
3、已知, 则 。
4,一个长方体的长、宽、高分别为9cm, 6cm, 5cm,先从这个长方体上尽可能大的切下一个正方体,再从剩余部分上又尽可能大的切下一个正方体,最后再从第二次剩余部分上又尽可能大的切下一个正方体,那么经过三次切割后剩余部分的体积为 cm3.
5、如图,三角形ABC的面积为1,BD∶DC=2∶1,E为AC的中点,AD与BE相交于P,那四边形PDCE的面积为 。
6、如图,已知梯形ABCD,AD∥BC,∠B+∠C=90°,EF=10,E,F分别是AD,BC的中点,则BC-AD=________
7、如图,正方形ABCD的边长为1,P为AB上的点,
Q为AD上的点,且△APQ的周长为2,
则∠PCQ=_______
8、在长方形内画一些直线,已知边上有三块面积分别为13,35,49,图中的数据表示所在的小块面积,则图中的阴影部分的面积为 。
9、如图,设O是等边三角形ABC内一点,
已知∠AOB=115°,∠BOC=125°,则以
OA,OB,OC为边所构成的三角形的各内
角的度数分别为 。
10、已知、、都不等于零,且,,那么=_______
11如果a、b、c满足a+2b+3c=12,且a2+b2+c2=ab+ac+bc,则代数式a+b2+c3=_______
12.如图,在长方形ABCD中,已知AD=12、AB=5、BD=AC=13,P是AD上任意一点,PE⊥BD、PF⊥AC,那么PE+PF=_______ 【提示 长方形的对角线相等且互相平分】
13.在⊿ABC中,AD⊥BC,垂足为D,AB+BD=DC,求证 ∠B=2∠C
14、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)直接写出线段EG与CG的数量关系;
(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.
你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.
(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?
F
B
A
C
E
图3
D
F
B
A
D
C
E
G
图2
F
B
A
D
C
E
G
图1
15、数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平行线CF于点F,求证:AE=EF.
经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;
(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
A
D
F
C
G
E
B
图1
A
D
F
C
G
E
B
图2
A
D
F
C
G
E
B
图3
16、已知中,为边的中点,
绕点旋转,它的两边分别交、(或它们的延长线)于、
当绕点旋转到于时(如图1),易证
当绕点旋转到不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、、又有怎样的数量关系?请写出你的猜想,不需证明.
A
E
C
F
B
D
图1
图3
A
D
F
E
C
B
A
D
B
C
E
图2
F
17、在中,将绕点顺时针旋转角得交于点,分别交
于两点.
(1)如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论;
A
D
B
E
C
F
A
D
B
E
C
F
(2)如图2,当时,试判断四边形的形状,并说明理由;
(3)在(2)的情况下,求的长.
18、点C为线段AB上一点,△ACM, △CBN都是等边三角形,线段AN,MC交于点E,BM,CN交于点F。求证:
(1)AN=MB.
(2)△CEF为等边三角形。
(3)将△ACM绕点C按逆时针方向旋转一定角度,其他条件不变,(1)中的结论是否依然成立?(只回答不证明),
(4)AN与BM相交所夹锐角是否发生变化,(只回答不证明)。
19、直线CD经过的顶点C,CA=CB.E、F分别是直线CD上两点,且.
(1)若直线CD经过的内部,且E、F在射线CD上,请解决下面两个问题:
①如图1,若,则 (填“”,“”或“”号);
②如图2,若,若使①中的结论仍然成立,则 与 应满足的关系是 ;
(2)如图3,若直线CD经过的外部,,请探究EF、与BE、AF三条线段的数量关系,并给予证明.
A
B
C
E
F
D
D
A
B
C
E
F
A
D
F
C
E
B
图1
图2
图3
展开阅读全文