收藏 分销(赏)

基于PBL的高中数学建模教学探究——以“管理红绿灯最佳转换时间”为例.pdf

上传人:自信****多点 文档编号:2015202 上传时间:2024-05-13 格式:PDF 页数:9 大小:457.73KB
下载 相关 举报
基于PBL的高中数学建模教学探究——以“管理红绿灯最佳转换时间”为例.pdf_第1页
第1页 / 共9页
基于PBL的高中数学建模教学探究——以“管理红绿灯最佳转换时间”为例.pdf_第2页
第2页 / 共9页
亲,该文档总共9页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Advances in Education 教育进展教育进展,2023,13(9),6361-6369 Published Online September 2023 in Hans.https:/www.hanspub.org/journal/ae https:/doi.org/10.12677/ae.2023.139990 文章引用文章引用:李雪菁,丁玮.基于 PBL 的高中数学建模教学探究J.教育进展,2023,13(9):6361-6369.DOI:10.12677/ae.2023.139990 基于基于PBL的高中数学建模教学探究的高中数学建模教学探究 以“管理红绿灯最佳转换时间”为

2、例以“管理红绿灯最佳转换时间”为例 李雪菁,丁李雪菁,丁 玮玮 上海师范大学数理学院,上海 收稿日期:2023年7月29日;录用日期:2023年8月27日;发布日期:2023年9月4日 摘摘 要要 数学建模是数学学科核心素养的重要内容,而数学建模是数学学科核心素养的重要内容,而PBL是一种有效的教学方法,应用于数学建模能实现教学是一种有效的教学方法,应用于数学建模能实现教学优化。为此,本文将优化。为此,本文将PBL教学法与高中数学建模教学相结合教学法与高中数学建模教学相结合并并分析分析其其应用可行性应用可行性,进行“管理红绿灯最,进行“管理红绿灯最佳转换时间”为主题的高中数学建模教学设计。佳转

3、换时间”为主题的高中数学建模教学设计。关键词关键词 PBL,高中数学建模高中数学建模,红绿灯红绿灯,教学设计教学设计 Research on High School Mathematical Modeling Teaching Based on PBL Taking“Managing the Optimal Change Time of Traffic Lights”as an Example Xuejing Li,Wei Ding College of Mathematics and Physics,Shanghai Normal University,Shanghai Received:J

4、ul.29th,2023;accepted:Aug.27th,2023;published:Sep.4th,2023 Abstract Mathematical modeling is an important part of the core literacy of mathematics subject,and PBL is an effective teaching method,which can realize teaching optimization when applied to mathemat-ical modeling.Therefore,this paper combi

5、nes PBL teaching method with high school mathemati-cal modeling teaching and analyzes the feasibility of its application,and carries out the design of 李雪菁,丁玮 DOI:10.12677/ae.2023.139990 6362 教育进展 high school mathematical modeling teaching with the theme of“managing the optimal traffic light transiti

6、on time”.Keywords PBL,High School Mathematical Modeling,Traffic Lights,Instructional Design Copyright 2023 by author(s)and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License(CC BY 4.0).http:/creativecommons.org/licenses/by/4.0/1.数学建模数学建模 数学建模是数学学科核

7、心素养的重要内容。普通高中数学课程标准(2017 年版)(以下简称 标准)提出:数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养。它搭建了数学与外部世界联系的桥梁,是数学应用的重要形式1。2.PBL 在数学建模中的应用可行性在数学建模中的应用可行性 Problem-Based Learning(简称 PBL)是以问题为导向的教学方法,也称作问题式学习。PBL 教学法强调以学生为中心,教师的身份是学生认知学习的引导者,基于创设真实生活情境,围绕问题链进行主要教学设计,采用小组合作的主要学习方式2,从而优化传统教育中学生被动学习的模式,激发学生的创造力和潜能,

8、促进学生的主动学习和思维发展。其核心内容是以问题为导向,立足社会实际发展的需要,通过团队协作和自主学习,发挥学生主观能动性,运用知识技能解决非结构化问题3。PBL 教学法与数学建模的核心要素相同,学习方式一致,研究内容相近,即 PBL 教学法与数学建模是相辅相成的4,二者的相互结合有助于提升学生的数学建模能力,提高学生的数学学习兴趣,激发学生的创造力和潜能,高效达成数学建模的培养目标,促进数学教育与社会实践的发展和进步。3.基于基于 PBL 的的“管理红绿灯最佳转换时间管理红绿灯最佳转换时间”教学设计教学设计 管管理红绿灯最佳转化时间理红绿灯最佳转化时间 教学理念 PBL 教学法与数学建模结合

9、,实现教学优化,以问题为导向促进学生自主探究和团队协作,激发数学学习兴趣,开阔数学视野,培养学生发现、分析、解决问题、逻辑推理、数学运算等多种能力,提升数学核心素养。教学目标(1)初步体验数学建模过程;(2)能够根据所学知识完成数学建模核心环节,达到落实相关数学建模的数学核心素养;(3)感悟数学建模的价值和意义,激发数学建模的兴趣和热情,体验数学与生活的联系,提升数学核心素养。教学重难点 教学重点:学生能够掌握数学建模的基本流程,自主通过所学知识构建数学模型,解决设置红绿灯转化时间实现道路畅通的问题。Open AccessOpen Access李雪菁,丁玮 DOI:10.12677/ae.20

10、23.139990 6363 教育进展 教学难点:数学模型的构建、选取和检验。教学过程(一)创设情境 课前播放许愿神龙中男主角和神龙遇到堵车现象的片段。师:同学们,该片段中男主角和神龙遇到了什么事情呢?生:堵车。师:堵车是我们生活中很常见的现象,那么请同学们思考,造成堵车的因素有哪些呢?生:道路中车的数量,车的行驶速度,道路数量,道路规定的行驶方向 师:很好!在交叉路口中,有哪个交通标志导致车辆必须停下等候通过呢?生:红绿灯。师:非常好!今天就让我们基于生活中常见的堵车现象,研究管理红绿灯的最佳转换时间,进行数学建模,实现最大限度的车辆畅通吧!设计意图:设计意图:选取相关堵车的动画片段,吸引学

11、生学习兴趣,通过分析堵车的生活情境引入管理红绿灯的最佳转换时间,引导学生从综合情境中抽象出数学问题,明确本节课的研究主题,并培养学生发现问题的能力。(二)初步建模 师:现实生活中十字路口所遇到的问题是非常复杂的,因此在建模前我们首先要进行条件假设,简化问题并保证建模的准确性。请同学们小组合作并思考在红绿灯转化时间的建模中,需要进行哪些条件假设?留给小组讨论一定的时间,请同学分享想法,师生共同总结:(1)不考虑行人;(2)各方向车辆不会闯红灯;(3)交通信号灯只有红绿灯,不考虑黄灯;(4)所有车辆长度、速度相同。问题 1:本市某一十字路口设有交通信号灯,双方向均只有直行方向,且行驶道路仅有一条。

12、如何设置红绿灯的转换时间最为科学?(见图 1)Figure 1.Schematic diagram of the intersection of problem 1 图图 1.问题 1 的十字路口简图 小组合作尝试解决问题 1,请同学分享想法,教师引导,最后师生共同总结:设立符号:(见表 1)李雪菁,丁玮 DOI:10.12677/ae.2023.139990 6364 教育进展 Table 1.Set symbol description table for question 1 表表 1.问题 1 的设立符号说明表 符号 单位 说明 1t 秒 南北方向的红灯时间 2t 秒 东西方向的红灯时

13、间 T 秒 一个红绿灯周期 1c 辆 南北方向单位时间内到达的车数 2c 辆 东西方向单位时间内到达的车数 那么,在南北方向红灯时,累积等待车辆数为1 1t c,南北方向车辆滞留时间为10,t,则设南北方向平均滞留时间为12t,故南北方向的总等待时间为2112t c。同理,东西方向的总等待时间为2222t c。根据题意,设置红绿灯转换时间最为科学,即南北和东西方向的总等待时间最少,因此,列出下式:()()1 222222,11221221 21121min1min222t ttt ct ccctTc tT cttT+=(1)即可看作关于2t的二次函数的最小值问题,求得判别式21 20T c c

14、=,根据二次函数性质,则该二次函数的图像与其对称轴的交点即为最小值点,故当12211212,cTc Tttcccc=+时,(1)式取得最小值,见图 2。Figure 2.(1)shows the image of the corresponding qua-dratic function 图图 2.(1)式中对应二次函数图像 根据得出结果,考虑当12cc=时,则有12tt=,即若两方向车流量相同,则两方向的红绿灯时间相同,这符合逻辑。所以,对于给定的南北、东西方向单位时间内到达的车数以及一个红绿灯周期,当设置南北方向的 红灯时间为212c Tcc+,东西方向的红灯时间为112cTcc+时,管理

15、红绿灯转换时间最为科学。设计意图:设计意图:基于 PBL 教学法,设置问题链,采取小组学习模式,教师作为学生学习的引导者的。依据循序渐进的教学原则,引导学生进行建模前的条件假设,并提出问题 1,根据题意构建模型并运用二次函数性质求解最值,同时进行了模型的检验和结论分析,为问题 2 做好铺垫。(三)深入探究 师:恭喜同学们成功解决问题 1,现在我们要在问题 1 的基础上考虑新的情况。李雪菁,丁玮 DOI:10.12677/ae.2023.139990 6365 教育进展 问题 2:本市某一十字路口设有交通信号灯,双方向均只有直行车辆,且行驶道路有多条。如何设置红绿灯的转换时间最为科学?(见图 3

16、)Figure 3.Schematic diagram of the intersection in question 2 图图 3.问题 2 的十字路口简图 小组合作尝试解决问题 2,请同学分享想法,教师引导,最后师生共同总结:设立符号:(见表 2)Table 2.Set symbol description table for question 2 表表 2.问题 2 的设立符号说明表 符号 单位 说明 1t 秒 南北方向的红灯时间 2t 秒 东西方向的红灯时间 T 秒 一个红绿灯周期 1c 辆 南北方向单位时间内到达的车数 2c 辆 东西方向单位时间内到达的车数 1n 条 南北方向的车道

17、数 2n 条 东西方向的车道数 那么,在南北方向红灯时,累积等待车辆数为1 1t c,南北方向车辆滞留时间为10,t,则设南北方向平均滞留时间为12t,由于南北方向由 1 条直行道变为1n条,使得累积车辆平均分在1n条路上,缓解了交通压力,故南北方向的总等待时间为21112t cn。同理,东西方向的总等待时间为22222t cn。根据题意,设置红绿 灯转换时间最为科学,即南北和东西方向的总等待时间最少,因此,列出下式:1 222211222,2122 11122121211121minmin222t ttt ct cc nc nTcT cttnnn nnnttT+=(2)李雪菁,丁玮 DOI:

18、10.12677/ae.2023.139990 6366 教育进展 即可看作关于2t的二次函数的最小值问题,求得判别式21 2120T c cn n=,根据二次函数性质,则该二次函数的图像与其对称轴的交点即为最小值点,故当122 121122 1122 1,c n Tc nTttc nc nc nc n=+时,(2)式取得最小值,见图 4。Figure 4.(2)corresponds to the image of quadratic function 图图 4.(2)式对应二次函数图像 根据得出结果,考虑当12nn=时,则问题 1 的结论成立,这符合逻辑。所以,对于给定的南北、东西方向单位

19、时间内到达的车数、车道数以及一个红绿灯周期,当设置南 北方向的红灯时间为2 1122 1c nTc nc n+,东西方向的红灯时间为12122 1c n Tc nc n+时,管理红绿灯转换时间最为科学。师:同学们,根据问题 2,我们可以发现增加同方向的道路数可以缓解交通压力,提高道路的畅通率。设计意图:设计意图:基于 PBL 教学法,提出问题 2 并引导学生小组合作解决新问题,在问题 1 的基础上,培养学生运用数学模型的一般方法和相关知识,创造性地建立数学模型,理解模型中符号的意义,提升学生逻辑推理和数学运算的能力。(四)拓展延伸 师:恭喜同学们又成功解决问题 2!再次考虑其他因素,请小组同学

20、们思考。问题 3:本市某一十字路口设有交通信号灯,东西方向有直行和左转弯车辆,南北方向仅有直行车辆。如何设置红绿灯的转换时间最为科学?(见图 5)Figure 5.Schematic diagram of the intersection in question 3 图图 5.问题 3 的十字路口简图 李雪菁,丁玮 DOI:10.12677/ae.2023.139990 6367 教育进展 小组合作尝试解决问题 3,该求解方法涉及高等数学知识,教师引导学生分享建模思路,具体求解方法进行适当科普渗透,不做详细讲解,师生共同总结:设立符号:(见表 3)Table 3.Set up symbol d

21、escription table for question 3 表表 3.问题 3 的设立符号说明表 符号 单位 说明 1t 秒 南北方向的红灯时间 2t 秒 东西方向直行的红灯时间 3t 秒 东西方向拐弯的红灯时间 T 秒 一个红绿灯周期 1c 辆 南北方向单位时间内到达的车数 2c 辆 东西方向直行单位时间内到达的车数 3c 辆 东西方向拐弯单位时间内到达的车数 注意:车辆在三种行驶方向上是互斥的,因此三个方向的绿灯时间之和为 T,即()()()123TtTtTtT+=,可得1232tttT+=。与问题 1 和 2 的分析过程类似,列出下式:()1 23222,1122331231min2

22、2t ttt ct ct ctttT+=(3)师:非常好!同学们的模型建立是正确的,我们发现(3)式中仅有一个限制条件,但存在 3 个未知数,对于多元函数求解最值涉及到高等数学的内容,目前高中阶段无法进一步求解,不过老师可以给同学们做一些科普和渗透。该求解可以应用高等数学中的拉格朗日极值法,同时涉及到偏导和多元方程组的内容。同学们如果对此非常感兴趣,欢迎与老师探讨!也希望同学们保持对数学的热爱和坚持,上了大学就能学习到今天老师介绍的内容和更多知识,建立更优质的数学模型!设计意图:设计意图:基于 PBL 教学法,在问题 1 和 2 的基础上提出问题 3,引导学生小组合作分享建模思路,问题难度的加

23、深需要运用高等数学知识,由此进行适当的渗透科普,培养学生的数学学习热情和兴趣,建立更优质的模型。(五)改进优化 师:同学们建模地非常优秀!成功解决了三个问题,非常棒!在建模前,我们进行了条件假设,简化了十字路口的实际问题,由此保证我们所建立模型的准确性和适用性。我们知道实际生活的问题是错综复杂的,也是包罗万象的,因此我们的数学模型也是需要反思改进,同时也可以利用现代信息技术例如 MATLAB,算法,Excel 等多种工具和方法,以及更高深的数学知识进行优化提升的。请各小组同学们根据实际生活中十字路口的情况,对于提升道路的总体通行能力,缓解交通压力,有哪些改进建议和方式方法吗?生 1:可以设置“

24、人行天桥或人行地下通道”,由此能够同时减少车辆和行人的等待时间。生 2:可以在十字路口中央区域设置“左转弯等待区”,增加左转车道的蓄车量,在左转通行时间内使得更多车辆通过。生 3:可以设置“特殊车辆的专业车道”,体型庞大的车辆例如公交,货车等行驶相对缓慢,同时李雪菁,丁玮 DOI:10.12677/ae.2023.139990 6368 教育进展 公交也能存在停站下车的情况,所以专用车道能够缓解交通压力并提升道路通行效率。师:同学们提出的建议非常有建设性!本次的数学建模课也接近尾声,同学们,数学建模是非常灵活有趣的,也是十分重要的能力。现实世界包罗万象,数学建模也可以随之瞬息万变,不同的理论知

25、识、方式方法、思维灵感等可以建立多样的数学模型,在建模过程中,我们也增强了团队协作、交流沟通以及应用实践等多种能力。最后,欢迎同学们学习数学建模,一起探究世界和数学的奥秘!设计意图:设计意图:基于 PBL 教学法,成功解决三个问题后,引导学生思考改进优化模型的建议,感悟数学的实践性和应用性,发现数学建模的意义和价值。板书设计(见图 6)Figure 6.Blackboard design 图图 6.板书设计 教学反思 本次教学设计基于 PBL 教学法并围绕培养数学建模素养展开,根据学生的认知发展规律,设置明确清晰的问题链,环环紧扣,通过引导学生思考并解决现实生活中的红绿灯最佳转换时间问题,锻炼

26、学生运用数学知识解决问题的能力,以及将理论与实践相结合的能力;教学过程设计较为完整,思路清晰,在问题提出和解决后,还加入引导学生结合实际对于模型优化的思考和建议,努力实现全方位提升学生的数学学科素养和能力。本次教学设计中也存在不足之处,教学过程中内容充实,设置问题链并引导学生解决需要一定时间,课时安排需要仔细考虑;同时,问题的难度也仍需根据实际学生的知识能力水平进行适当修改调整;在数学建模过程中,也可以加入更多教育信息技术进行内容的丰富和补充,例如使用 Excel,Matlab,C 语言等等工具解决问题,从而实现高效推进数学课堂并拓展学生思维。4.结语结语 本文将 PBL 教学法与高中数学建模

27、教学相结合,在分析其应用可行性的基础上,进行以“管理红绿灯最佳转换时间”主题为例的具体高中数学建模教学设计,通过 3 个问题的提出与解决,由浅入深,层层推进,并在教学过程中努力实现提升学生数学建模能力与数学核心素养的落地,创设真实生活情境,引导学生自主建构,培养并建设具有创新思维与综合能力的新时代人才。李雪菁,丁玮 DOI:10.12677/ae.2023.139990 6369 教育进展 参考文献参考文献 1 中华人民共和国教育部制定.普通高中数学课程标准(2017 年版)M.北京:人民教育出版社,2018.2 戴梦玮,吴晓红.PBL 教学模式的运用在高中数学教学中的困境与突破以任意角的三角函数为例J.数学学习与研究,2020(28):151-152+155.3 刘维先.PBL 在数学建模教学中的应用J.浙江工贸职业技术学院学报,2010,10(2):37-40.4 张兰云,翟文娟,张坤.PBL 教学模式与数学建模高效课堂的构建J.智库时代,2019(40):160-161.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服