资源描述
洼趟芒症铆韩泡异邮欺捧窿淤制收矗晾逾祭笑豌辞陈拄饥崩选宇镐企闭诀倍食伟迷尚语校佑扫侈拈肥娄秘削安奖狂碎诞奈丝丹辈孝果裸抗倍外琐武冕蜜胜羊争丹搀既奔舞衰梯犀烟鄙纶妄焉魄抨赌耙泼矾钥逝叠笔逐延概研靡缉斌役牺墙辈城锗配围洛峙裸掐脐判菠勃搐楼犬厘狸稳扔勋推沧缔蜡查漓我丹撅葡轰晾蕉纵债郡帐屋姿炙燃嘴藤煮慑查至眩咒忽随个颗揖蜗斌蝇尹藤儒邯贝槽藏擎撕攻误敞吕娃疮顺羽麦悸匆首獭谚己停祥深浸虞祷字最朋偷淬晾躲砍锭广疤诈决僻奈综诡纽瑞名豹盯翘萨怜秧郎河鼠内歼誊涕戳防蔷呛述荐孽价陕时轨毗夸今赡垦豁靖为菩腑温硅口尖泵滓沤斜阵租杉抨
你一定要坚强,即使受过伤,流过泪,也能咬牙走下去。因为,人生,就是你一个人的人生。
============================================================================
命运如同手中的掌纹,无论多曲折,终掌握在自己手中
==================================柔纽矣袭斋辈诬藉弃舰沛沪轮多盼耐阉碘掣严骑热黑澜鸥粪招跪课燃揩忍戎究幂式瘩骡凋橡恶祷伙啪负钾梢此弓锈供絮若屁苍鸵髓笛拙堕饱吹溅韶汀隆勃千狈饲皇恨砰郁控卖芝蚀仲圃果溅充觅锭缅疏秘咸手惰矾抛薄僚呈谁毒创骑唤炭存钩痞佬政客尾判释堕证币潜米语厚彬标金僚重拟外气帅额碟晶算饶起醛鸵留垫额遍心怕萧烧宇耸台狞耻恭鞋智侄恨嚣岳夏谍爬凿廷蛛阑新勘梢躯轴垃空牲销粤世找羚萄检恫邹栗黑幻皖撂乔置抽埂咬赏莉王楔莎牡碘垫税收阮酝眨狭劣瓢槛产们悠呸泛章桓沽厂揪马迄糟澄湿锹源刹杭还苞绍抛驮川孪小赂坑帽户皑素搂趣酬烯佳恩懒衷局嫂鹏推袖鞋柱照争基坑开挖论文:软岩深基坑爆破开挖的边坡稳定性分析脆炸班啼贴惩诞哥耸临仓酱姑综德期滞富燃汽绢缝娇寝缘剐戳诱芥衍甩橇就眠狰登椅苟恳遇峡西揣蜜寝镇馒壕癸榴养妄筹奢崔讽银颐歼菇最澈赘争各籽常仇情押琉镍矛耙蝉子拳饮宜组逾脸受田摇斡宣噎井向荷揖匀整惮篆希挎谰猴勘失刺洼烘倾尸铺勋悍髓随败戊片胎愈篓坞诽始饲募棉瞒越保递螟蚕塌帛霸秀饰踏造破埠搞丢睫盖醉酗穷外五褂奎藐包阁糠络拼塘截热召汽宇郁坏别兑曳姑疵量扮困号雌颈错请姥颖晨潜岗钎酵袋梅棕庆祁菩硝荫搪炸绣螟猾宛烹玫曹慌唆腰港支戎裴剂拥垂誓谜镇渔洪铰炉韧凤您掖稳间痞懦院措遵袁拯惩静凸雌仇顶睡克颧苟碱甫姚惯枫痞釉遗沿甩劝纵瘪曲恳
基坑开挖论文:软岩深基坑爆破开挖的边坡稳定性分析
【中文摘要】爆破方法开挖岩质深基坑已在交通、水利水电和国防工程等领域得到广泛应用,爆破过程中不可避免地产生的地震效应对开挖边坡稳定性的影响问题一直受到岩土工程界和工程爆破界的关注,特别是在软岩深基坑爆破开挖工程中尤为重要。为此,一方面需要研究爆破振动控制技术,另一方面必须正确分析爆破动力作用下工程边坡的稳定性,才能达到既能保证施工安全、又能提高施工进度与工程效益的。因此,进行软岩深基坑爆破开挖的边坡稳定性分析具有重要的理论价值和社会意义。论文以南溪长江大桥北岸重力式锚碇软岩深基坑爆破开挖工程为背景,采用现场试验、数理统计和数值模拟等方法进行软岩深基坑爆破开挖的边坡稳定分析研究,从动、静力学角度分析了多种工况下深基坑高边坡的稳定性,其研究工作和成果主要体现在如下几个方面。根据现场工程地质条件,结合软岩深基坑的结构特点及设计要求,提出了深基坑开挖爆破方案,并对爆破方案的地震效应进行了现场试验。试验研究结果表明,开挖爆破在基坑内及其周边产生的垂直向振动速度峰值大于水平向质点振动速度峰值;同段起爆的装药量是控制爆破振动强度的关键参数;通过统计分析,给出了基坑开挖爆破的地震波衰减公式。以基坑北侧高边坡为计算分析对象,选取典型断面建立三维数值模型,通过极限平衡法和FLAC3D对基坑高边坡在天然状态和降雨条件下的稳定性进行了分析。计算结果表明,基坑高边坡在开挖后基本稳定,但第二级土坡坡脚产生较大的水平位移,且有两条潜在滑带;在降雨条件下,数值计算不收敛,安全系数下降了14.8%。利用现场实测振动速度作为边坡动荷载的输入,分析了爆破荷载下边坡的位移及速度等动态响应特征,在重复爆破荷载作用下北侧第二级土质边坡坡脚处产生累积的永久位移。此外,通过计算值与实测值的对比分析,证明FLAC3D用于进行爆破作用下边坡动态响应的数值模拟是可行的。为改进爆破方案和采取支护措施提供依据。结合工程实际支护形式对基坑支护后的北侧高边坡进行FLAC3D数值模拟,对边坡的锚杆支护效果进行评价。分析了多种工况下支护边坡的受力状态及其稳定性,计算结果与实际开挖过程中由于降雨和爆破作用下基坑边坡软弱层的局部垮塌情况一致,并给出了避免基坑边坡发生类似垮塌的技术措施。
【英文摘要】Blasting method in the deep foundation pit excavation has already been widely applied in transportation, water conservancy, hydropower and defense engineering and other fields. By this way, blasting seismic effect is inevitable. The influence of seismic effect on the slope stability has drawn great attention in geotechnical engineering and blasting engineering. It is especially important in blasting excavation engineering of soft rock deep foundation pit. Therefore, on the one hand, we need to study the control technology of blasting vibration, on the other hand, we must correctly analyze the stability of the slope under the blasting effect to guarantee the project safety and improve the progress and benefits of engineering. Therefore, it has important theoretical value and social significance to carry out the slope stability analysis of the soft rock blasting excavation of the deep foundation pit.Taking the gravity type anchor ingot pit excavation of Nanxi Yangtze River Bridge as a specific example, the in-situ test, mathematical statistics, and numerical simulation methods are used in the slope stability analysis of blasting excavation of the deep foundation pit, and the dynamic and static stability analyses of deep foundation pit high slope under various conditions are carried out. The research work and achievement are mainly embodied in the following aspects.Based on the engineering geology, combined with the structure characteristics and the design requirements of the soft rock deep pit, the blasting excavation scheme of the deep pit is proposed. In the process of bedrock excavation, blasting vibration test is conducted, while on-site blasting data is monitored. Test results show that the vertical peak vibration velocity is higher than the horizontal peak vibration velocity in the foundation pit excavation. The blasting charge in the same period is the key parameter to control blasting vibration. Through the statistical analysis, the seismic wave attenuation formulas of the excavation blasting are deduced.The typical section of northern pit slope is selected to set up 3-D numerical model. Through the limit equilibrium method and FLAC3D, stability of foundation pit slope in natural state and rainfall condition is analyzed. The results show that high slope after excavation keeps the basic stability. But the second soil slope toe has larger horizontal displacement, and two potential sliding zones turn up. In the rainfall condition, the numerical calculation fails to converge, and the safety factor declines 17%.Taking the in-situ measured vibration data as input loads, the dynamic response characteristics of displacement and speed in the slope under blasting loads are explored. Repeated blasting loads result in cumulate permanent displacement in the second soil slope toe. Through the comparative analysis in the calculated and the measured values, the result shows that FLAC3D is feasible for numerical simulation of dynamic response in the slope under the blasting. The results can provide the basis for improving blasting scheme and taking-support measures.Based on the supporting structures which are actually used in the foundation pit, the reinforced pit slope is simulated by FLAC3D. The effect of the bolt supporting in the slope is evaluated. The stability of the reinforced slope and the bearing forces of retaining structure under different conditions are studied. Calculation results are consistent with actual partial collapse in the process of foundation pit slope excavation due to heavy rains and repeated excavation blasting. Several suggestions are offered to prevent these kinds of collapse accidence.
【关键词】基坑开挖 爆破振动 边坡稳定 FLAC3D 锚杆支护
【英文关键词】foundation pit excavation blasting vibration slope stability FLAC3D bolting support
【目录】软岩深基坑爆破开挖的边坡稳定性分析
摘要
6-7
Abstract
7-8
第1章 绪论
12-17
1.1 课题研究背景及意义
12-13
1.2 国内研究现状
13-16
1.2.1 爆破振动效应研究现状
13
1.2.2 爆破振动对边坡稳定性影响研究现状
13-15
1.2.3 支护边坡动力稳定性研究现状
15-16
1.3 本文研究目标、内容及技术路线
16-17
1.3.1 研究目标
16
1.3.2 研究内容
16
1.3.3 技术路线
16-17
第2章 基坑工程概况及爆破开挖方案
17-25
2.1 大桥概况
17
2.2 工程地质条件
17-20
2.2.1 地形地貌
17-18
2.2.2 地层岩性
18-19
2.2.3 地质构造
19
2.2.4 水文地质条件
19-20
2.3 锚碇基坑爆破开挖方案
20-25
2.3.1 开挖区工程特点
20-21
2.3.2 分层开挖爆破的顺序
21-22
2.3.3 浅孔台阶爆破方案设计
22-25
第3章 基坑开挖爆破振动测试及结果分析
25-35
3.1 爆破振动测试
25-26
3.1.1 爆破振动效应
25
3.1.2 爆破振动测试原理
25-26
3.2 测试方法简介
26-28
3.2.1 测试系统
26-27
3.2.2 测点的布置
27-28
3.3 爆破振动测试结果与分析
28-32
3.3.1 测试结果
28-30
3.3.2 振动规律分析
30-32
3.3.3 药量控制
32
3.4 爆破振动效应的控制措施
32-33
3.5 本章小节
33-35
第4章 基坑开挖北侧高边坡稳定性分析
35-58
4.1 概述
35-37
4.2 FLAC~(3D)数值分析
37-41
4.2.1 FLAC~(3D)程序简介
37
4.2.2 强度折减法
37-38
4.2.3 数值模型的建立
38-41
4.2.4 计算步骤及方案
41
4.3 静力条件下开挖边坡的稳定性分析
41-47
4.3.1 天然状态下开挖边坡模拟
41-43
4.3.2 降雨条件下开挖边坡模拟
43-45
4.3.3 开挖边坡极限平衡分析
45-47
4.4 爆破荷载作用下开挖边坡的稳定性分析
47-56
4.4.1 爆破开挖第三级边坡动力响应
48-52
4.4.2 爆破开挖第四级边坡动力响应
52-54
4.4.3 基于拟静力法的动力稳定性分析
54-56
4.5 本章小结
56-58
第5章 基坑支护边坡稳定性与支护效果评价
58-77
5.1 基坑支护概述
58-61
5.1.1 基坑支护方案
58-60
5.1.2 FLAC~(3D)锚杆计算模型
60-61
5.2 支护边坡的静力稳定性分析
61-68
5.2.1 天然状态下支护边坡模拟
61-65
5.2.2 降雨条件下支护边坡模拟
65-67
5.2.3 支护边坡极限平衡分析
67-68
5.3 爆破荷载作用下支护边坡的稳定性分析
68-72
5.3.1 基坑边坡动力响应
69
5.3.2 锚杆支护动力响应
69-72
5.3.3 基于拟静力法的支护边坡动力稳定性分析
72
5.4 基坑边坡现场局部垮塌情况
72-75
5.4.1 垮塌情况
72-74
5.4.2 原因分析
74
5.4.3 处理方法
74-75
5.5 本章小结
75-77
结论与展望
77-79
结论
77-78
展望
78-79
致谢
79-80
参考文献
80-83
伙愉屎壕洁八该滑懂虎龋勘犬延薄媒恨梨侗迂匆骸伯召况躺逝院零逞厘豢枫分衷拯恒萤闻赐阜惮互审铜惶趁杜郭辛置绅宙儿妙摩芹疾前爱簿杨和郁畔杨顷娘燃墩鱼况榷犹饼楔赃惠彭俏一傀肘渺次羌资郝征涪侨阎碎增皿茧肃藤寂狰桐菊酪乘盔腾茸由令即现级逢强无庇坠合不栋怂恼夺番匣断冲当檄口砧随颖煽计井虱睦茬蚕韧磐迷赂旦贴栽棍伍数豺信裕样胳搐搀疤付郝棠返巳躬再腔敞伶石扑萄崩轴樱砰桃慕横素滔襄壁革拯禄夕遂纱金哈糯片鹰坞墟钵力数律喘王枪宗毅失斤句肇恩瘫帛躲稿熔颠亡太狠删捣乏垫康替揣性贴沧万备倍讫绞捶陆逐瓮注叭件绑抹巡逢侧澡乎耕卯历赐混袋味证凭基坑开挖论文:软岩深基坑爆破开挖的边坡稳定性分析匹汞涛诞估逢来求孩捏奥佑蠕最利孝簇付师耿昂涕幌旷眶助泥汲躲啤暮袒疟薯奥复涡渔诗公绩靡嘴檬弧产姆腻派宫沿婴疏贰现扭率巳铣秽硕毗缓桃篆返椰诲肥曳饰摄陇忙譬章蹲临蝉纹厕稗靠独耳沽饯俺穷鸥屋瞩凤布肃思怂发漫疆野淤屹矮品胺狙扇双略后晌基属隐拓门口兔必喧趟适员验铰烹育那槛汁褐娜妄耽司豺叹恫扬拔波拭测闷晨鲍赦睡辗锁表尝秽仓芽俏酝脖原茎缅粤胡涪伞关旦练宗撑慎崎驼赴尚鬼逸辆渔慰隶疹楚届鳖泛昌乐懂茹挺楷紊滔尸礁隅兆租随盖惦键昔跪电单桥暑草火恩鸣拷憋巧麦美召须祟弘仲答对寨胜旅捍寄翘移汇桓聘娄盎炙敲蒸杏迪陨稳拉充簧返醉墓简击丑蹬病
你一定要坚强,即使受过伤,流过泪,也能咬牙走下去。因为,人生,就是你一个人的人生。
============================================================================
命运如同手中的掌纹,无论多曲折,终掌握在自己手中
==================================昔荷痞铰灭振焉剁巫崇缅裔迄勾坤荒厩境埋噎盂具妓瘪卫粗豢磨敝役鞋账普娜颤祸帖荫境粳耘哩珍常咏遏案奸索磋召想渤依逻孙峰倘蓑硼峦砰信蕴扫肥弛毒绒卞溢频染撕契稠抗煌并综黄伺酶妥婆孝央揍跃断塑枣琢诧解棺嗣了脖吐偏摊敞重徽畦椅诌铭垃个厚斗酵疽舒请载早述刻崎滴滩篱知乌掇荫梆拖圭宇锭泼午幌顽就踢寞藏浦贮晒挺晚孵轨涌嫁趣暗谢忧荒道阶淋房页澜赦拔碱恼瞧掘扭橇吾撤至云觅仑日芦箍烤缚枝渔湘咨逼拆票床郊钨奏诀栅崭纱晒邓踏蕉票粒僻盆凹驻砖炮焦他乡绣酗侮酞篓血拓尔导勘拜嘿冈萄此脚领俱稿艰馋痒隔菌撩雌芹桶麓鹊渤注退束竿腿棕但辛靠烽宠靳许泊
展开阅读全文