1、人教版七年级下册数学期末试题含答案完整一、选择题1100的算术平方根是()A100BCD102下列四幅图案中,通过平移能得到图案E的是( )AABBCCDD3在平面直角坐标系中,下列各点在第二象限的是( )ABCD4下列命题是假命题的是( )A垂线段最短B内错角相等C在同一平面内,不重合的两条直线只有相交和平行两种位置关系D若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直5如图,已知平分,平分,下列结论正确的有( );若,则A1个B2个C3个D4个6下列计算正确的是( )ABCD7如图,已知,平分,则的度数是( )ABCD8如图,点A(0,1),点A1(2,0),点A2(3,2
2、),点A3(5,1),按照这样的规律下去,点A100的坐标为( )A(101,100)B(150,51)C(150,50)D(100,53)九、填空题9已知8,则x的值是_十、填空题10将点先关于x轴对称,再关于y轴对称的点的坐标为_十一、填空题11如图,BD、CE为ABC的两条角平分线,则图中1、2、A之间的关系为_十二、填空题12如图,直角三角板直角顶点在直线上已知,则的度数为_十三、填空题13如图,将长方形ABCD沿DE折叠,使点C落在边AB上的点F处,若,则_十四、填空题14对于三个数a,b,c,用Ma,b,c表示这三个数的平均数,用mina,b,c表示这三个数中最小的数例如:M1,2
3、,3,min1,2,31,如果M3,2x1,4x1min2,x3,5x,那么x_.十五、填空题15如图,在平面直角坐标系中,已知点,连接,交y轴于B,且,则点B坐标为_十六、填空题16如图,在平面直角坐标系中,一电子蚂蚁按照设定程序从原点出发,按图中箭头所示的方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,第4次接着运动到点,第5次接着运动到点,第6次接着运动到点按这样的运动规律,经过2021次运动后,电子蚂蚁运动到的位置的坐标是_十七、解答题17计算(1);(2)十八、解答题18求下列各式中的x值:(1)(x1)24;(2)(2x+1)3+640;(3)x33十九、解
4、答题19推理填空:如图,已知BCGF,DGFF;求证:B+F180请在括号内填写出证明依据证明:BCGF(已知),ABCD( )DGFF(已知), /EF( )AB/EF( )B+F180( )二十、解答题20如图,在边长为1个单位长度的小正方形网格中建立平面直角坐标系已知三角形ABC的顶点A的坐标为A(-1,4),顶点B的坐标为(-4,3),顶点C的坐标为(-3,1)(1)把三角形ABC向右平移5个单位长度,再向下平移4个单位长度得到三角形ABC,请你画出三角形ABC,并直接写出点A的坐标;(2)若点P(m,n)为三角形ABC内的一点,则平移后点P在ABC内的对应点P的坐标为 (3)求三角形
5、ABC的面积二十一、解答题21阅读下面文字:我们知道:是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,事实上小明的表示法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:由“平方与开平方互为逆运算”可知:,即,的整数部分是2,小数部分是(1)的整数部分是_,小数部分是_;(2)如果的小数部分是a,整数部分是b,求的值;(3)已知,其中x是整数,且,求二十二、解答题22如图,这是由8个同样大小的立方体组成的魔方,体积为64(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长二十三、解答
6、题23问题情境:(1)如图1,求度数小颖同学的解题思路是:如图2,过点作,请你接着完成解答问题迁移:(2)如图3,点在射线上运动,当点在、两点之间运动时,试判断、之间有何数量关系?(提示:过点作),请说明理由;(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、三点不重合),请你猜想、之间的数量关系并证明二十四、解答题24已知点A,B,O在一条直线上,以点O为端点在直线AB的同一侧作射线,使(1)如图,若平分,求的度数;(2)如图,将绕点O按逆时针方向转动到某个位置时,使得所在射线把分成两个角若,求的度数;若(n为正整数),直接用含n的代数式表示二十五、解答题25如图,平分,B=450,
7、C=730 (1) 求的度数;(2) 如图,若把“”变成“点F在DA的延长线上,”,其它条件不变,求 的度数;(3) 如图,若把“”变成“平分”,其它条件不变,的大小是否变化,并请说明理由【参考答案】一、选择题1D解析:D【分析】根据算术平方根的定义求解即可求得答案【详解】解:102=100,100算术平方根是10;故选:D【点睛】本题考查了算术平方根的定义注意熟记定义是解此题的关键2B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移
8、的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离3C【分析】根据点在第二象限的符号特点横坐标是负数,纵坐标是正数作答【详解】解:A、(-,0)在x轴上,故
9、本选项不符合题意;B、(2,-1)在第四象限,故本选项不符合题意;D、(-2,1)在第二象限,故本选项符合题意;D、(-2,-1)在第三象限,故本选项不符合题意故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案【详解】A、垂线段最短,正确,是真命题,不符合题意;B、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内错角相等),符合题意;C、在同一
10、平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意;D、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等,则四个角一定全相等,都是,所以互相垂直,不符合题意;故选:B【点睛】题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理5C【分析】由三个已知条件可得ABCD,从而正确;由及平行线的性质则可推得正确;由条件无法推出ACBD,可知错误;由及平分,可得ACP=E,得ACBD,从而由平行线的性质易得,即正确【详解】平分,平分ACD=2ACP=22,CAB=21=2CAP ACD+CAB=2
11、(1+2)=290=180故正确ABE=CDBCDB+CDF=180故正确由已知条件无法推出ACBD故错误,ACD=2ACP=22ACP=EACBDCAP=FCAB=21=2CAP故正确故正确的序号为故选:C【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键6D【分析】分别根据算术平方根的定义以及立方根的定义逐一判断即可【详解】解:A、,故本选项不合题意;B、,故本选项不合题意;C、,故本选项不合题意;D、,故本选项符合题意;故选:D【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键7B【分析】利用平行线的性质,角平分线的定义即可解决
12、问题【详解】解:,平分,故选:B【点睛】本题考查平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型8B【分析】观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),A2n(3n,n+1),由100是偶数,A100的横坐标应该是10023,纵坐标应该是1002+1解析:B【分析】观察图形得到偶数点的规律为,A2(3,2),A4(6,3),A6(9,4),A2n(3n,n+1),由100是偶数,A100的横坐标应该是10023,纵坐标应该是1002+1,则可求A100(150,51)【详解】解:观察图形可得,奇数点:A1(2,0),A3(5,1),A5(8,2
13、),A2n-1(3n-1,n-1),偶数点:A2(3,2),A4(6,3),A6(9,4),A2n(3n,n+1),100是偶数,且100=2n,n=50,A100(150,51),故选:B【点睛】本题考查点的坐标规律;熟练掌握平面内点的坐标,能够根据图形的变化得到点的坐标规律是解题的关键九、填空题965【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】8x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键解析:65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】8x-1=64x=65故答案为65【点睛】本
14、题考查了算术平方根的定义,掌握算术平方根的定义是关键.十、填空题10(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解【详解】设关于x轴对称的点为则点的坐标为解析:(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解【详解】设关于x轴对称的点为则点的坐标为(-1,-4)设点和点关于y轴对称则的坐标为(1,-4)故答案为:(1,-4)【点睛】本题考查了关于坐标轴对称的点的坐标特征,关于x轴对称的两点,横坐标相同,
15、纵坐标互为相反数,关于y轴对称的两点,纵坐标相同,横坐标互为相反数十一、填空题111+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、C解析:1+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、CE为ABC的两条角平分线,ABD=ABC,ACE=ACB,1=ACE+A,2=ABD+A1+2=ACE+A+ABD+A=ABC+ACB+A+A(ABC+ACB+A)+A =90+A故答
16、案为1+2-A=90【点睛】考查了三角形的内角和等于180、外角与内角关系及角平分线的性质,是基础题三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和十二、填空题1240【分析】根据ab,可以得到1=DAE,2=CAB,再根据DAC=90,即可求解.【详解】解:如图所示ab1=DAE,2=CABDAC=90D解析:40【分析】根据ab,可以得到1=DAE,2=CAB,再根据DAC=90,即可求解.【详解】解:如图所示ab1=DAE,2=CABDAC=90DAE+CAB=180-DAC=901+2=902=90-1=40故答案为:40.【点睛】本题主要考查了
17、平行线的性质,解题的关键在于能够熟练掌握平行线的性质.十三、填空题135【分析】根据翻折的性质,可得到DEC=FED,BEF与DEC、FED三者相加为180,求出BEF的度数即可【详解】解:DFE是由DCE折叠得到的,DEC=FE解析:5【分析】根据翻折的性质,可得到DEC=FED,BEF与DEC、FED三者相加为180,求出BEF的度数即可【详解】解:DFE是由DCE折叠得到的,DEC=FED,又EFB=45,B=90,BEF=45,DEC=(180-45)=67.5故答案为:67.5【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键十四、填空题14或 【详解】【分析
18、】根据题中的运算规则得到M3,2x1,4x1=1+2x,然后再根据min2,x3,5x的规则分情况讨论即可得.【详解】M3,2x1,4x1=2x+1解析:或 【详解】【分析】根据题中的运算规则得到M3,2x1,4x1=1+2x,然后再根据min2,x3,5x的规则分情况讨论即可得.【详解】M3,2x1,4x1=2x+1,M3,2x1,4x1min2,x3,5x,有如下三种情况:2x+1=2,x=,此时min2,x3,5x= min2,=2,成立;2x+1=-x+3,x=,此时min2,x3,5x= min2,=2,不成立;2x+1=5x,x=,此时min2,x3,5x= min2,=,成立,x
19、=或,故答案为或.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解十五、填空题15【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出【详解】解:(1),如图,连接,设,解析:【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出【详解】解:(1),如图,连接,设,点的坐标为,故答案是:【点睛】本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关
20、键是利用分割的思想解答十六、填空题16(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-解析:(1617,2)【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标的为1,2,2,4,4,4+1,4+2,4+2,4+4,4+4,每5次一轮,每次比前一次起始多4,这一规律纵坐标为2,0,-2,-2,0,每5次一轮这一规律,进而求出即可【详解】解:前五次运动横坐标分别为:1,2,2,4,4,第6到10次运动横坐标分别为:4+1,4+2,4+2,4+4,4+
21、4,第5n+1到5n+5次运动横坐标分别为:4n+1,4n+2,4n+2,4n+4,4n+4,前五次运动纵坐标分别2,0,-2,-2,0,第6到10次运动纵坐标分别为2,0,-2,-2,0,第5n+1到5n+5次运动纵坐标分别为2,0,-2,-2,0,20215=4041,经过2021次运动横坐标为=4404+1=1617,经过2021次运动纵坐标为2,经过2021次运动后,电子蚂蚁运动到的位置的坐标是(1617,2)故答案为:(1617,2)【点睛】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键十七、解答题17(1)3;(2)【分析】
22、(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可【详解】解:(1)原式(2)原式【点睛】本题考查有理数解析:(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可【详解】解:(1)原式(2)原式【点睛】本题考查有理数的加减混合运算,以及实数的混合运算等,掌握基本的运算法则,注意运算顺序是解题关键十八、解答题18(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析
23、:(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x12或x12,解得:x3或x1;(2)方程整理得:(2x+1)364,开立方得:2x+14,解得:x2.5;(3)方程整理得:x3,开立方得:x1.5【点睛】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0十九、解答题19同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线
24、都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补【分析】根据平行线的判定得出ABCD,CDEF,求出ABEF解析:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补【分析】根据平行线的判定得出ABCD,CDEF,求出ABEF,根据平行线的性质得出即可【详解】证明:B=CGF(已知),ABCD(同位角相等,两直线平行),DGF=F(已知),CDEF(内错角相等,两直线平行),ABEF(两条直线都与第三条直线平行,这两条直线也互相平行),B+F=180(两直线平行,同旁内角互补),故答案为:同位角相等,
25、两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键二十、解答题20(1)作图见解析,A(4,0);(2)(m+5,n-4);(3)3.5【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可;(2)利用平移的性质得出P(m,n)的对应点P的坐标即解析:(1)作图见解析,A(4,0);(2)(m+5,n-4);(3)3.5【分析】(1)首先确定A、B、C三点平移后的位置,再连接即可;(2)利用平移的性质得出P(m,n)的对应点P的坐标即可;(3)直接利
26、用ABC所在矩形面积减去周围三角形面积进而得出答案【详解】解:(1)如图所示:ABC即为所求:A(4,0);(2)ABC先向右平移5个单位长度,再向下平移4个单位长度,得到ABC,P(m,n)的对应点P的坐标为(m+5,n-4);(3)ABC的面积=33213132=3.5【点睛】本题主要考查了坐标与图形的变化平移,三角形面积求法以及坐标系内图形平移,正确得出对应点位置是解题关键二十一、解答题21(1)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出解析:(1
27、)3,;(2);(3)【分析】(1)先估算出的范围,再求出即可;(2)先估算出和的范围,再求出a、b的值,最后求出代数式的值即可;(3)先求出10+的范围,再求出x、y的值,最后代入求出即可【详解】解:(1),34,的整数部分是3,小数部分是-3,故答案为:3,-3;(2),23,67,a=-2,b=6,;(3)12,1112,x=11,y=,【点睛】本题考查了估算无理数的大小和求代数式的值,能估算出无理数的大小是解此题的关键二十二、解答题22(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱
28、长为,则,所以,即正方体的棱长为4解析:(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4(2)因为正方体的棱长为4,所以AB【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键二十三、解答题23(1)见解析;(2),理由见解析;(3)当在延长线时(点不与点重合),;当在之间时(点不与点,重合),理由见解析【分析】(1)过P作PEAB,构造同旁内角,利用平行线性质,可得APC=解析:(1)见解析;
29、(2),理由见解析;(3)当在延长线时(点不与点重合),;当在之间时(点不与点,重合),理由见解析【分析】(1)过P作PEAB,构造同旁内角,利用平行线性质,可得APC=113;(2)过过作交于,推出,根据平行线的性质得出,即可得出答案;(3)画出图形(分两种情况:点P在BA的延长线上,当在之间时(点不与点,重合),根据平行线的性质即可得出答案【详解】解:(1)过作,;(2),理由如下:如图3,过作交于,又;(3)当在延长线时(点不与点重合),;理由:如图4,过作交于,又,;当在之间时(点不与点,重合),理由:如图5,过作交于,又【点睛】本题考查了平行线的性质的应用,主要考查学生的推理能力,解
30、决问题的关键是作辅助线构造内错角以及同旁内角二十四、解答题24(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最解析:(1);(2);【分析】(1)依据角平分线的定义可求得,再依据角的和差依次可求得和,根据邻补角的性质可求得结论;(2)根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论;根据角相等和角的和差可得EOC=BOD,再根据比例关系可得,最后依据角的和差和邻补角的性质可求得结论【详解】解:(1)平分,;(2)
31、,EOC+COD=BOD+COD,EOC=BOD,;,EOC+COD=BOD+COD,EOC=BOD,【点睛】本题考查邻补角的计算,角的和差,角平分线的有关计算能正确识图,利用角的和差求得相应角的度数是解题关键二十五、解答题25(1)DAE =14;(2)DFE =14;(3)DAE 的大小不变,DAE =14,证明详见解析.【分析】(1)求出ADE的度数,利用DAE=90-ADE即可求出DAE解析:(1)DAE =14;(2)DFE =14;(3)DAE 的大小不变,DAE =14,证明详见解析.【分析】(1)求出ADE的度数,利用DAE=90-ADE即可求出DAE的度数(2)求出ADE的度
32、数,利用DFE=90-ADE即可求出DAE的度数(3)利用AE平分BEC,AD平分BAC,求出DFE=15即是最好的证明【详解】(1)B=45,C=73,BAC=62,AD平分BAC,BAD=CAD=31,ADE=B+BAD=45+31=76,AEBC,AEB=90,DAE=90-ADE=14(2)同(1),可得,ADE=76,FEBC,FEB=90,DFE=90-ADE=14(3)的大小不变.=14理由: AD平分 BAC,AE平分BECBAC=2BAD,BEC=2AEB BAC+B+BEC+C =3602BAD+2AEB=360-B-C=242BAD+AEB=121 ADE=B+BADADE=45+BADDAE=180-AEB-ADE=180-AEB-45-BAD=135-(AEB+BAD)=135-121=14【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键.