1、人教版七年级下册数学期末试题一、选择题1如图,与是同旁内角,它们是由( )A直线,被直线所截形成的B直线,被直线所截形成的C直线,被直线所截形成的D直线,被直线所截形成的2北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的在下面如图的四个图中,能由如图经过平移得到的是( )ABCD3若点在轴上,则点所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列给出四个命题:如果两个角相等,那么它们是对顶角;如果两个角互为邻补角,那么它们的平分线互相垂直;如果两条直线垂直于同一条直线,那么这两条直线平行;如果两条直线平行于同一条直线,那么这两条直线平行其中为假命题的是()ABCD5为增强学
2、生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知ABCD,EAB80,则E的度数是( )A30B40C60D706下列算式,正确的是( )ABCD7两个直角三角板如图摆放,其中,与交于点M,若,则的大小为( )A95B105C115D1258如图,已知A1(1,0),A2(1,1),A3(1,1),A4(1,1),A5(2,1)则点A2021的坐标为( )A(505,504)B(506,505)C(505,505)D(506,506)九、填空题94的算术平方根是_十、填空题10若点A(5,b)与点B(a+1,3)关于x轴对称
3、,则(a+b)=_十一、填空题11如图,在ABC中,A=50,C=72,BD是ABC的一条角平分线,求ADB=_度十二、填空题12如图,点M为CD上一点,MF平分CME若157,则EMD的大小为_度十三、填空题13如图,在四边形ABCD纸片中,ADBC,ABCD将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K若CKF35,则A+GED_十四、填空题14如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有_个十五、填空题15已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是_十六、填空题16如图,所有正方形的中心均在坐标原点,且
4、各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,顶点依次用A1,A2,A3,A4表示,则顶点A2021的坐标是_十七、解答题17计算: (1)3-(-5)+(-6) (2)十八、解答题18(1)已知am3,an5,求a3m2n的值(2)已知xy,xy,求下列各式的值:x2yxy2;x2y2.十九、解答题19填空并完成以下过程:已知:点P在直线CD上,BAP+APD180,12请你说明:EF解:BAP APD180,(_)AB_,(_)BAP_,(_)又12,(已知)3_1,4_2,3_,(等式的性质)AEPF,(_)EF(_)二十、解答题20如图,在平面直角坐标系中,DABC的
5、顶点 C的坐标为(1,3)点A、B分别在格点上(1)直接写出A、B两点的坐标;(2)若把DABC向上平移3个单位,再向右平移2个单位得DABC,画出DABC;(3)若DABC内有一点 M(m,n),按照(2)的平移规律直接写出平移后点M的对应点 M的坐标二十一、解答题21一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根二十二、解答题22小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,
6、请简要说明理由.二十三、解答题23如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,DAB120(1)如图1,若BCG40,求ABC的度数;(2)如图2,AF平分HAB,BC平分FCG,BCG20,比较B,F的大小;(3)如图3,点P是线段AB上一点,PN平分APC,CN平分PCE,探究HAP和N的数量关系,并说明理由二十四、解答题24已知,如图,BAD=50,点C为射线AD上一点(不与A重合),连接BC(1)问题提出如图,ABCE,BCD=73 ,则:B= (2)类比探究在图中,探究BAD、B和BCD之间有怎样的数量关系?并用平行线的性质说明理由(3)拓展延伸
7、如图,在射线BC上取一点O,过O点作直线MN使MNAD,BE平分ABC交AD于E点,OF平分BON交AD于F点,交AD于G点,当C点沿着射线AD方向运动时,FOG的度数是否会变化?若变化,请说明理由;若不变,请求出这个不变的值二十五、解答题25如图,ABC和ADE有公共顶点A,ACBAED90,BAC=45,DAE=30(1)若DE/AB,则EAC ;(2)如图1,过AC上一点O作OGAC,分别交AB、AD、AE于点G、H、F若AO2,SAGH4,SAHF1,求线段OF的长;如图2,AFO的平分线和AOF的平分线交于点M,FHD的平分线和OGB的平分线交于点N,N+M的度数是否发生变化?若不变
8、,求出其度数;若改变,请说明理由【参考答案】一、选择题1A解析:A【分析】根据两直线被第三条直线所截,根据角位于两直线的中间,截线的同一侧是同旁内角,可得同旁内角【详解】解:与是同旁内角,它们是由直线,被直线所截形成的故选A【点睛】本题考查了同旁内角的含义,熟练掌握含义是解题的关键2C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,A是旋转180后图形,故选项A不合题意;B是解析:C【分析】根据平移只改变图形的位置,不改变图形的形状与大小解答【详解】解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知
9、,A是旋转180后图形,故选项A不合题意;B是轴对称图形,故选项B不合题意;C选项的图案可以通过平移得到故选项C符合题意;D是轴对称图形,故选项D不符合题意故选:C【点睛】本题考查了图形的平移,掌握平移的定义及性质是解题的关键3D【分析】根据点在轴上,求得,从而求得点的坐标,进而判断所在的象限【详解】在轴上,在第四象限,故选D【点睛】本题考查了直角坐标系中坐标和象限的知识;解题的关键是熟练掌握直角坐标系中坐标和象限的性质,从而完成求解4C【分析】根据两个相等的角不一定是对顶角对进行判定,根据邻补角与角平分线的性质对进行判断,根据在同一平面内,两条直线垂直于同一条直线,那么这两条直线平行对进行判
10、断,根据平行线的判定对进行判断【详解】解:如果两个角相等,那么它们不一定是对顶角,选项说法错误,符合题意;如果两个角互为邻补角,那么它们的平分线互相垂直,选项说法正确,不符合题意;在同一平面内,如果两条直线垂直于同一条直线,那么这两条直线平行,选项说法错误,符合题意;如果两条直线平行于同一条直线,那么这两条直线平行,选项说法正确,不符合题意;故选:C【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可5A【分析】过点作,先根据平行线的性质可得,再根据平行公理推论、平行线的性
11、质可得,然后根据角的和差即可得【详解】解:如图,过点作,故选:A【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键6A【分析】根据平方根、立方根及算术平方根的概念逐一计算即可得答案【详解】A.,计算正确,故该选项符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算错误,不符合题意,D.,故该选项计算错误,不符合题意,故选:A【点睛】本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键7B【分析】根据BCEF,E=45可以得到EDC=E=45,然后根据C=30,C+MDC+DMC=180,即可求解.【详解】解:BCEF,E=45EDC=E=45,C=30
12、,C+MDC+DMC=180,DMC=180-C-MDC=105,故选B.【点睛】本题主要考查了三角形的内角和定理,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8B【分析】求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标4循环次数余数,余数0,1,2,3确定相应的象限,由此确定点在第解析:B【分析】求在平面直角坐标系中的位置,经观察分析所有点,除外,其他所有点按一定的规律分布在四个象限,且每个象限的点满足:角标4循环次数余数,余数0,1,2,3确定相应的象限,由此确定点在第四象限,根据推导可得出结论;【详解】由题可
13、知,第一象限的点:,角标除以4余数为2;第二象限的点:,角标除以4余数为3;第三象限的点:,角标除以4余数为0;第四象限的点:,角标除以4余数为1;由上规律可知:,点在第四象限,又,即横坐标为正数,数字为角标除以4的商加1;纵坐标为负数,数字为角标除以4的商,故选:B【点睛】本题主要考查了点的坐标规律,准确理解是解题的关键九、填空题9【详解】试题分析:,4算术平方根为2故答案为2考点:算术平方根解析:【详解】试题分析:,4算术平方根为2故答案为2考点:算术平方根十、填空题101【分析】关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值【详解】解:点A(5,b)与点B(a+1,3
14、)关于x轴对称,5=a+1,b=-3,a=4,(a+b解析:1【分析】关于x轴对称的两点横坐标相等,纵坐标互为相反数,由此可求a、b的值【详解】解:点A(5,b)与点B(a+1,3)关于x轴对称,5=a+1,b=-3,a=4,(a+b)2017=(4-3)2017=1故答案为:1【点睛】本题考查了关于坐标轴对称的两点的坐标关系关于x轴对称的两点横坐标相等,纵坐标互为相反数,关于y轴对称的两点纵坐标相等,横坐标反数十一、填空题11101【分析】直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=18050解析:
15、101【分析】直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=1805072=58,BD是ABC的一条角平分线,ABD=29,ADB=1805029=101.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.十二、填空题12【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=解析:【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=
16、180-CME求出结果.【详解】ABCD,CMF=157,MF平分CME,CME=2CMF114,EMD=180-CME66,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.十三、填空题13145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行解析:145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行四边形
17、,AC,根据翻转折叠的性质可知,AEFGEF,EFBEFK,ADBC,DEFEFB,AEFEFC,GEFAEFEFC,DEFEFBEFK,GEFDEFEFCEFK,GEDCFK,C+CFK+CKF180,C+CFK145,A+GED145,故答案为145【点睛】本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键十四、填空题143【分析】根据无理数的估算、结合数轴求解即可【详解】解:在到4.1之间由2,3,4这三个整数故答案为:3.【点睛】本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解析:3【分
18、析】根据无理数的估算、结合数轴求解即可【详解】解:在到4.1之间由2,3,4这三个整数故答案为:3.【点睛】本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键十五、填空题15(4,3) 【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数所以点A的坐解析:(4,3) 【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数所以点A的坐标为(4,3)故答案为:(4,3) 【点睛】
19、本题考查点的坐标,利用数形结合思想解题是关键十六、填空题16(-506,-506)【分析】根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A解析:(-506,-506)【分析】根据正方形的性质找出部分An点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数)”,依此即可得出结论【详解】解:观察发现:A1(-1,-1),A2(-1,1),A3(1,1),A4(1
20、,-1),A5(-2,-2),A6(-2,2),A7(2,2),A8(2,-2),A9(-3,-3), A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数), 2021=5054+1, A2021(-506,-506),故答案为:(-506,-506)【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A4n+4(n+1,-n-1)(n为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键
21、十七、解答题17(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6=2(2)解:(-1)2- =1-4 =1-2=-1【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键十八、解答题18(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;
22、(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),解析:(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),;(2),;,【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键十九、解答题19已知;CD;同旁内角互补两直线平行;APC;两直线平行内错角相等;已知;BAP;APC;4;内错角相等两直线平行;两直线平行内错角相等【分析】根据平行线的性质和判定即可解决问题;【详解析:已知;C
23、D;同旁内角互补两直线平行;APC;两直线平行内错角相等;已知;BAP;APC;4;内错角相等两直线平行;两直线平行内错角相等【分析】根据平行线的性质和判定即可解决问题;【详解】解:BAP+APD180(已知),ABCD(同旁内角互补两直线平行),BAPAPC(两直线平行内错角相等),又12,(已知),3BAP1,4APC2,34(等式的性质),AEPF(内错角相等两直线平行),EF(两直线平行内错角相等)【点睛】本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键二十、解答题20(1),;(2)见解析;(3)【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个
24、单位,再向右平移2个单位得到,连接即可;(3)将M(m,n)向上平移3个单位,再向右平移解析:(1),;(2)见解析;(3)【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到的坐标【详解】(1)根据原点的位置确定点的坐标,则,;(2)将三点向上平移3个单位,再向右平移2个单位得到,在图中描出点,连接,DABC即为所求(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3【点睛】本题考查了平面直角坐标系的定义,平移的作图
25、,根据平移的方向和距离确定点的坐标是解题的关键二十一、解答题21【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案【详解】一个正数的两个平方根为和,解得:,是的立方根,解得:,解析:【分析】根据平方根的性质即可求出的值,根据立方根的定义求得的值,根据求得的小数部分是,即可求得答案【详解】一个正数的两个平方根为和,解得:,是的立方根,解得:,的整数部分是6,则小数部分是:,的平方根为:【点睛】本题考查了平方根的性质,立方根的定义,估算无理数的大小,解题的关键是正确理解平方根的定义以及“夹逼法”的运用二十二、解答题22(1)可以以正方形一边为长方形的
26、长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cma2=400又a0a=20又要裁出的长方形面积为300cm2若以原正方形纸片的边长为长方形的长,则长方形的宽为:30020=15(cm)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)长方形纸片的
27、长宽之比为3:2设长方形纸片的长为3xcm,则宽为2xcm6x 2=300x 2=50又x0x =长方形纸片的长为又202即:20小丽不能用这块纸片裁出符合要求的纸片二十三、解答题23(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后解析:(1)ABC100;(2)ABCAFC;(3)N90HAP;理由见解析【分析】(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得ABM与CBM,便可求得最后结果;(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,ABCH
28、AB+BCG,AFCHAF+FCG,由角平分线的性质和已知角的度数分别求得HAF,FCG,最后便可求得结果;(3)过P作PKHDGE,先由平行线的性质证明ABCHAB+BCG,AFCHAF+FCG,再根据角平分线求得NPC与PCN,由后由三角形内角和定理便可求得结果【详解】解:(1)过点B作BMHD,则HDGEBM,如图1,ABM180DAB,CBMBCG,DAB120,BCG40,ABM60,CBM40,ABCABM+CBM100;(2)过B作BPHDGE,过F作FQHDGE,如图2,ABPHAB,CBPBCG,AFQHAF,CFQFCG,ABCHAB+BCG,AFCHAF+FCG,DAB1
29、20,HAB180DAB60,AF平分HAB,BC平分FCG,BCG20,HAF30,FCG40,ABC60+2080,AFC30+4070,ABCAFC;(3)过P作PKHDGE,如图3,APKHAP,CPKPCG,APCHAP+PCG,PN平分APC,NPCHAP+PCG,PCE180PCG,CN平分PCE,PCN90PCG,N+NPC+PCN180,N180HAPPCG90+PCG90HAP,即:N90HAP【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与
30、方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点二十四、解答题24(1);(2),见解析;(3)不变, 【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作,类似(1)利用平行线的性质,得出三个角的关系;(3)运用解析:(1);(2),见解析;(3)不变, 【分析】(1)根据平行线的性质求出,再求出的度数,利用内错角相等可求出角的度数;(2)过点作,类似(1)利用平行线的性质,得出三个角的关系;(3)运用(2)的结论和平行线的性质、角平分线的性质,可求出的度数,可得结论【详解】(1)因为,所以,因为BCD=73 ,所以,故答案为: (2)
31、,如图,过点作,则,因为,所以,(3)不变,设,因为平分,所以由(2)的结论可知,且,则:因为,所以,因为平分,所以因为,所以,所以【点睛】本题考查了平行线的性质和角平分线的定义,解题关键是熟练运用平行线的性质证明角相等,通过等量代换等方法得出角之间的关系二十五、解答题25(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的性质求解即可(2)利用三角形的面积求出GH,HF,再证明AO=OG=2,可得结论利用角平分线的定解析:(1)45;(2)1;是定值,M+N=142.5【分析】(1)利用平行线的性质求解即可(2)利用三角形的面积求出GH,HF,再证明AO=OG=2,可得
32、结论利用角平分线的定义求出M,N(用FAO表示),可得结论【详解】解:(1)如图,ABEDE=EAB=90(两直线平行,内错角相等),BAC=45,CAE=90-45=45故答案为:45(2)如图1中,OGAC,AOG=90,OAG=45,OAG=OGA=45,AO=OG=2,SAHG=GHAO=4,SAHF=FHAO=1,GH=4,FH=1,OF=GH-HF-OG=4-1-2=1结论:N+M=142.5,度数不变理由:如图2中,MF,MO分别平分AFO,AOF,M=180-(AFO+AOF)=180-(180-FAO)=90+FAO,NH,NG分别平分DHG,BGH,N=180-(DHG+BGH)=180-(HAG+AGH+HAG+AHG)=180-(180+HAG)=90-HAG=90-(30+FAO+45)=52.5-FAO,M+N=142.5【点睛】本题考查平行线的性质,角平分线的定义,三角形内角和定理,三角形外角的性质等知识,最后一个问题的解题关键是用FAO表示出M,N