1、人教版中学七年级下册数学期末复习(含答案)一、选择题1下列各式中,正确的是()A=2B=4C=-4D=-22下列现象中是平移的是( )A将一张纸对折B电梯的上下移动C摩天轮的运动D翻开书的封面3在平面直角坐标系中,点P(5,1)在()A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A三角形三个内角的和等于B对顶角相等C在同一平面内,垂直于同一条直线的两条直线互相平行D两条直线被第三条直线所截,同位角相等5下列几个命题中,真命题有( )两条直线被第三条直线所截,内错角相等;如果和是对顶角,那么;一个角的余角一定小于这个角的补角;三角形的一个外角大于它的任一个内角A1个B2个C
2、3个D46若,则x和y的关系是()Axy0Bx和y互为相反数Cx和y相等D不能确定7两个直角三角板如图摆放,其中,与交于点M,若,则的大小为( )A95B105C115D1258如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2021次运动后,动点的坐标是( )A(2020, 0)B(2021,1)C(2021,2)D(2021,0)九、填空题9的算术平方根是_十、填空题10在平面直角坐标系中,已知点A的坐标为(2,5),点Q与点A关于y轴对称,点P与点Q关于x轴对称,则点P
3、的坐标是_十一、填空题11如图,BD、CE为ABC的两条角平分线,则图中1、2、A之间的关系为_十二、填空题12如图,已知AB/EF,B=40,E=30,则C-D的度数为_十三、填空题13把一张长方形纸条按如图所示折叠后,若,则_;十四、填空题14将按下列方式排列,若规定表示第排从左向右第个数,则(20,9)表示的数的相反数是_十五、填空题15已知点,轴,则点C的坐标是_ 十六、填空题16在平面直角坐标系中,已知点A(4,0),B(0,3),对AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4),那么第(2013)个三角形的直角顶点坐标是_十七、解答题17(1)计算:(2
4、)计算:(3)已知,求的值.十八、解答题18求下列各式中的值:(1); (2)十九、解答题19如图,四边形 ABCD 中,A = C = 90 ,BE ,DF 分别是ABC ,ADC 的平分线 试说明 BE / DF 请补充说明过程,并在括号内填上相应理由解:在四边形 ABCD 中, A + ABC + C + ADC = 360A = C = 90(已知)ABC +ADC= ,BE , DF 分别是ABC , ADC 的平分线,1 =ABC , 2= ADC ( )1+2= (ABC + ADC) 1+2= 在FCD 中, C = 90 ,DFC + 2 = 90 ( )1+2=90 (已证
5、)1=DFC ( )BE DF ( )二十、解答题20以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方,(1)公交车站的坐标是 ,宠物店的坐标是 ;(2)在图中标出公园,书店的位置;(3)将医院的位置怎样平移得到人寿保险公司的位置二十一、解答题21数学张老师在课堂上提出一个问题:“通过探究知道:,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法现请你根据小明的说法解答:(1)的小数部分是多少,请表示出来(2)a为的小数部分,b
6、为的整数部分,求的值(3)已知8+=x+y,其中x是一个正整数,0y1,求的值二十二、解答题22如图,用两个边长为10的小正方形拼成一个大的正方形.(1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?二十三、解答题23(1)(问题)如图1,若,求的度数;(2)(问题迁移)如图2,点在的上方,问,之间有何数量关系?请说明理由;(3)(联想拓展)如图3所示,在(2)的条件下,已知,的平分线和的平分线交于点,用含有的式子表示的度数二十四、解答题24(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现
7、象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有,请判断光线a与光线b是否平行,并说明理由(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线与水平线的夹角为,问如何放置平面镜,可使反射光线b正好垂直照射到井底?(即求与水平线的夹角)(3)如图3,直线上有两点A、C,分别引两条射线、,射线、分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线转动一周的时间内,是否存在某时刻,使得与平行?若存在,求出所有满足条件的时间t二十五、解答题25如图,点A、B分别在直线MN、
8、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值【参考答案】一、选择题1D解析:D【分析】依据算术平方根、平方根、立方根的性质求解即可【详解】解:A、,故选项错误;B、,故选项错误;C、,故选项错误;D、,故选项正确;故选D【点睛】本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键2B【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移
9、变换,简称平移,判断:A、将一张纸对折,不符合平移定解析:B【分析】根据平移的概念,依次判断即可得到答案;【详解】解:根据平移的概念:把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,判断:A、将一张纸对折,不符合平移定义,故本选项错误;B、电梯的上下移动,符合平移的定义,故本选项正确;C、摩天轮的运动,不符合平移定义,故本选项错误;D、翻开的封面,不符合平移的定义,故本选项错误故选B【点睛】本题考查平移的概念,在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移3D【分析】根据点的横纵坐标的符号可得所在象限【详解】解:点P的横坐标是正
10、数,纵坐标是负数,点P(5,-1)在第四象限,故选:D【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-)4D【分析】根据三角形内角和定理,对顶角的性质,平行线的判定和性质逐一判断即可.【详解】解:A、三角形三个内角的和等于180,故此说法正确,是真命题;B、对顶角相等,故此说法正确,是真命题;C、在同一平面内,垂直于同一条直线的两条直线互相平行两条,故此说法正确,是真命题;D、两条平行直线被第三条直线所截,同位角相等,故此说法错误,是假命题.故选D.【点睛】本题主要考查了命题的真假
11、,解题的关键在于能够熟练掌握相关知识进行判断求解.5B【分析】根据平行线的性质对进行判断;根据对顶角的性质对进行判断;根据余角与补角的定义对进行判断;根据三角形外角性质对进行判断【详解】解:两条平行直线被第三条直线所截,内错角相等,所以错误;如果1和2是对顶角,那么1=2,所以正确;一个角的余角一定小于这个角的补角,所以正确;三角形的外角大于任何一个与之不相邻的一个内角,所以错误故选:B【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真
12、命题叫做定理6B【解析】分析:先移项,再两边立方,即可得出x=-y,得出选项即可详解:,x=-y,即x、y互为相反数,故选B点睛:考查了立方根,相反数的应用,解此题的关键是能得出x=-y7B【分析】根据BCEF,E=45可以得到EDC=E=45,然后根据C=30,C+MDC+DMC=180,即可求解.【详解】解:BCEF,E=45EDC=E=45,C=30,C+MDC+DMC=180,DMC=180-C-MDC=105,故选B.【点睛】本题主要考查了三角形的内角和定理,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8B【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1
13、,0,2,0,4个数一个循环,进而可得经过第2021次运动后,动点P的坐标【详解】解:观察点的坐标变化可知:第1次从原解析:B【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,4个数一个循环,进而可得经过第2021次运动后,动点P的坐标【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以202145051,所以经过第2021次运动后,动点P的坐
14、标是(2021,1)故选:B【点睛】本题考查了规律型点的坐标,解决本题的关键是观察点的坐标变化寻找规律九、填空题92【分析】先求出=4,再求出算术平方根即可【详解】解:=4,的算术平方根是2,故答案为:2【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力解析:2【分析】先求出=4,再求出算术平方根即可【详解】解:=4,的算术平方根是2,故答案为:2【点睛】本题考查了立方根和算术平方根的应用,主要考查学生的计算能力十、填空题10(2,5)【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】点A的坐标为(2,5),点Q与点A关于y轴对称,点Q的坐标为(2,5)
15、,点P与点Q关于x轴解析:(2,5)【分析】根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可【详解】点A的坐标为(2,5),点Q与点A关于y轴对称,点Q的坐标为(2,5),点P与点Q关于x轴对称,点P的坐标是(2,5)故答案为:(2,5)【点睛】本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键十一、填空题111+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出1+2与A的关系,再根据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、C解析:1+2-A=90【分析】先根据三角形的外角等于与它不相邻的两个内角的和,写出1+2与A的关系,再根
16、据三角形内角和等于180,求出1+2与A的度数关系【详解】BD、CE为ABC的两条角平分线,ABD=ABC,ACE=ACB,1=ACE+A,2=ABD+A1+2=ACE+A+ABD+A=ABC+ACB+A+A(ABC+ACB+A)+A =90+A故答案为1+2-A=90【点睛】考查了三角形的内角和等于180、外角与内角关系及角平分线的性质,是基础题三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和十二、填空题1210【分析】过点C作CGAB,过点D作DHEF,根据平行线的性质可得ABCGDHEF,从而可得BCG=B=40,EDH=E=30,DCG=CDH,
17、即可求解【详解】解析:10【分析】过点C作CGAB,过点D作DHEF,根据平行线的性质可得ABCGDHEF,从而可得BCG=B=40,EDH=E=30,DCG=CDH,即可求解【详解】解:如图,过点C作CGAB,过点D作DHEF,AB/EF,ABCGDHEF,B=40,E=30,BCG=B=40,EDH=E=30,DCG=CDH,BCD-CDE=BCG-EDH=40-30=10故答案为:10【点睛】本题主要考查了平行线的性质,准确作出辅助线是解题的关键十三、填空题1355【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得
18、出结论【详解】解:AOB=70,解析:55【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,AOB+BOG+BOG=180,BOG+BOG=180-70=110BOG由BOG翻折而成,BOG=BOG,BOG= =55ABCD,OGD=BOG=55故答案为:55【点睛】本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键十四、填空题14【分析】根据数的排列方法可知,第一排:1个数,第二排2个数第三排3个数,第四排4个数,第m-1排有(m-1)个数,从第一排到(m-1)排共有:1
19、+2+3+4+(m-1)个数,根据数的排列解析:【分析】根据数的排列方法可知,第一排:1个数,第二排2个数第三排3个数,第四排4个数,第m-1排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+(m-1)个数,根据数的排列方法,每四个数一个轮回,根据题目意思找出第m排第n个数到底是哪个数后再计算【详解】(20,9)表示第20排从左向右第9个数是从头开始的第1+2+3+4+19+9=199个数,即1,中第三个数 :,的相反数为故答案为【点睛】此题主要考查了数字的变化规律,这类题型在中考中经常出现对于找规律的题目找准变化是关键十五、填空题15(6,2)或(4,2)【分析】根据平行于x轴
20、直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解【详解】点A(1,2),ACx轴,解析:(6,2)或(4,2)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解【详解】点A(1,2),ACx轴,点C的纵坐标为2,AC=5,点C在点A的左边时横坐标为1-5=-4,此时,点C的坐标为(-4,2),点C在点A的右边时横坐标为1+5=6,此时,点C的坐标为(6,2)综上所述,则点C的坐标是(6,2)或(-4,2)故答案为(6,2)或(-4,2)【点睛】本题考查了点的坐标,
21、熟记平行于x轴直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论十六、填空题16(8052,0)【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解解析:(8052,0)【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解】解:点A(4,0),B(0,3),OA4,OB3,AB5,第(3)个三角形的直角顶点的坐标是;观察图形不难发现,每3个三角形为一个
22、循环组依次循环,一次循环横坐标增加12,20133671第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,第(2013)个三角形的直角顶点的坐标是即故答案为:【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键十七、解答题17(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;解析:(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配
23、律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)直接利用平方根的定义计算得出答案【详解】解:(1),;(2),;(3)解得:或故答案为:(1)2;(2)6;(3) 或【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键十八、解答题18(1);(2)【分析】(1)先移项,然后运用直接开平方法,即可求出的值;(2)方程两边同时除以8,然后计算立方根,即可得到答案【详解】解:(1),;(2),解析:(1);(2)【分析】(1)先移项,然后运用直接开平方法,即可求出的值;(2)方程两边同时除以8,然
24、后计算立方根,即可得到答案【详解】解:(1),;(2),;【点睛】本题考查了直接开平方法、开立方根法求方程的解,解题的关键是熟练掌握直接开平方法、开立方根法进行解题十九、解答题19见解析【分析】根据四边形的内角和,可得ABC+ADC=180,然后根据角平分线的定义可得,1+2=90,再根据三角形内角和得到,DFC+2=90,等量代换1=DFC,即可判解析:见解析【分析】根据四边形的内角和,可得ABC+ADC=180,然后根据角平分线的定义可得,1+2=90,再根据三角形内角和得到,DFC+2=90,等量代换1=DFC,即可判定BEDF【详解】在四边形ABCD中,A+ABC+C+ADC=360A
25、=C=90,ABC+ADC=180(四边形的内角和是360),BE,DF分别是ABC,ADC的平分线,1 =ABC , 2= ADC(角平分线定义)1+2= (ABC + ADC) 1+2=90,在FCD中,C=90,DFC+2=90(三角形的内角和是180),1+2=90(已证),1=DFC(等量代换),BEDF(同位角相等,两直线平行 )【点睛】本题主要考查了平行线的判定与性质,关键是掌握三角形、四边形的内角和,以及同位角相等,两直线平行二十、解答题20(1),;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠
26、物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即解析:(1),;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即可求解;(2)公园在第二象限内,距离 轴2个单位,距离 轴3个单位;书店在第一象限内,距离 轴1个单位,距离 轴1个单位;即可解答;(3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置,即可【详解】解:(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位,故公交车站的坐标是;宠物店在第四象限内,距离 轴2个单位
27、,距离 轴3个单位,故宠物店的坐标是;(2)公园,书店公园在第二象限内,距离 轴2个单位,距离 轴3个单位;书店在第一象限内,距离 轴1个单位,距离 轴1个单位;位置如图所示:(3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置【点睛】本题主要考查了平面直角坐标系,用坐标来表示点的位置,根据位置写出点的坐标,熟练掌握平面直角坐标系内每个象限内点的坐标的特征是解题的关键二十一、解答题21(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入解析:(
28、1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入求值即可【详解】解:(1)12的整数部分是1的小数部分是1;(2)12,23的整数部分是1,的整数部分是2的小数部分是1;a=1,b=2=1(3)的小数部分是1y=1x=8+(1)=9=19【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键二十二、解答题22(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求
29、出长方形的边长,再判断即可【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm,宽为2xcm,则3x2x=480,解得:x=因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式二十三、解答题23(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;
30、(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PF解析:(1)90;(2)PFC=PEA+P;(3)G=【分析】(1)根据平行线的性质与判定可求解;(2)过P点作PNAB,则PNCD,可得FPN=PEA+FPE,进而可得PFC=PEA+FPE,即可求解;(3)令AB与PF交点为O,连接EF,根据三角形的内角和定理可得GEF+GFEPEA+PFC+OEF+OFE,由(2)得PEA=PFC-,由OFE+OEF=180-FOE=180-PFC可求解【详解】解:(1)如图1,过点P作PMAB,1=AEP又AEP=40,1=40ABCD, PMCD, 2+PFD=180PFD=
31、130,2=180-130=501+2=40+50=90即EPF=90(2)PFC=PEA+P理由:过P点作PNAB,则PNCD,PEA=NPE,FPN=NPE+FPE,FPN=PEA+FPE,PNCD,FPN=PFC,PFC=PEA+FPE,即PFC=PEA+P;(3)令AB与PF交点为O,连接EF,如图3在GFE中,G=180-(GFE+GEF),GEFPEA+OEF,GFEPFC+OFE,GEF+GFEPEA+PFC+OEF+OFE,由(2)知PFC=PEA+P,PEA=PFC-,OFE+OEF=180-FOE=180-PFC,GEF+GFE(PFC)+PFC+180PFC180,G18
32、0(GEF+GFE)180180+【点睛】本题主要考查平行线的性质与判定,灵活运用平行线的性质与判定是解题的关键二十四、解答题24(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65;(3)5秒或95秒【分析】(1)根据等角的补角相等求出3与4的补角相等,再根据内错角相等,两直线平行即可判定ab;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得1=2,然后根据平角等于180求出1的度数,再加上40即可得解;(3)
33、分AB与CD在EF的两侧,分别表示出ACD与BAC,然后根据两直线平行,内错角相等列式计算即可得解;CD旋转到与AB都在EF的右侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解;CD旋转到与AB都在EF的左侧,分别表示出DCF与BAC,然后根据两直线平行,同位角相等列式计算即可得解【详解】解:(1)平行理由如下:如图1,3=4,5=6,1=2,1+5=2+6,ab(内错角相等,两直线平行);(2)如图2:入射光线与镜面的夹角与反射光线与镜面的夹角相等,1=2,入射光线a与水平线OC的夹角为40,b垂直照射到井底,1+2=180-40-90=50,150=25,MN与
34、水平线的夹角为:25+40=65,即MN与水平线的夹角为65,可使反射光线b正好垂直照射到井底;(3)存在如图,AB与CD在EF的两侧时,BAF=105,DCF=65,ACD=180-65-3t=115-3t,BAC=105-t,要使ABCD,则ACD=BAC,即115-3t=105-t,解得t=5;如图,CD旋转到与AB都在EF的右侧时,BAF=105,DCF=65,DCF=360-3t-65=295-3t,BAC=105-t,要使ABCD,则DCF=BAC,即295-3t=105-t,解得t=95;如图,CD旋转到与AB都在EF的左侧时,BAF=105,DCF=65,DCF=3t-(180
35、-65+180)=3t-295,BAC=t-105,要使ABCD,则DCF=BAC,即3t-295=t-105,解得t=95,此时t105,此情况不存在综上所述,t为5秒或95秒时,CD与AB平行【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论二十五、解答题25(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/
36、GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键