1、人教版七年级下册数学期末考试试卷一、选择题1化简的结果为()A16B4C2D2下列车标图案,可以看成由图形的平移得到的是( )ABCD3下列各点中,在第三象限的点是( )ABCD4下列命题中是假命题的是( )A等角的补角相等B平行于同一条直线的两条直线平行C对顶角相等D同位角相等5如图,的平分线的反向延长线和的平分线的反向延长线相交于点,则( )ABCD6如图,数轴上的点A所表示的数为x,则x210的立方根为()A10B10C2D27在同一平面内,若A与B的两边分别平行,且A比B的3倍少40,则A的度数为( )A20B55C20或125D20或558如图所示,已知点A(1,2),将长方形ABO
2、C沿x轴正方向连续翻转2021次,点A依次落在点A1,A2,A3,A2021的位置,则A2021的坐标是()A(3038,1)B(3032,1)C(2021,0)D(2021,1)九、填空题949的算术平方根是_十、填空题10点关于y轴对称的点的坐标是_十一、填空题11若点A(9a,3a)在第二、四象限的角平分线上,则A点的坐标为_十二、填空题12如图所示,直线AB,BC,AC两两相交,交点分别为A,B,C,点D在直线AB上,过点D作DEBC交直线AC于点E,过点E作EFAB交直线BC于点F,若ABC50,则DEF的度数_十三、填空题13如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为
3、,则_十四、填空题14规定,例如:,通过观察,那么_十五、填空题15若点P(2-m,m+1)在x轴上,则P点坐标为_十六、填空题16如图,在平面直角坐标系中,边长为1的等边OA1A2的一条边OA2在x的正半轴上,O为坐标原点;将OA1A2沿x轴正方向依次向右移动2个单位,依次得到A3A4A5,A6A7A8,则顶点A2021的坐标为 _十七、解答题17计算:(1) (2)十八、解答题18已知m+n=2,mn=-15,求下列各式的值(1);(2)十九、解答题19如图,已知1+AFE=180,A=2,求证:A=C+AFC 证明: 1+AFE=180 CDEF( , )A=2 ( ) ( , ) AB
4、CDEF( , ) A= ,C= ,( , ) AFE =EFC+AFC , = 二十、解答题20在平面直角坐标系中,为坐标原点,点的坐标为,点坐标为,且满足(1)若没有平方根,且点到轴的距离是点到轴距离的倍,求点的坐标;(2)点的坐标为,的面积是的倍,求点的坐标二十一、解答题21若的整数部分为a,小数部分为b(1)求a,b的值(2)求的值二十二、解答题22小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍她不知能否裁得出来,正在发愁小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意小明的说法吗?你认为小丽能用这块纸片裁
5、出符合要求的纸片吗?为什么?二十三、解答题23已知ABCD,线段EF分别与AB,CD相交于点E,F(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知A35,C62,求APC的度数;解:过点P作直线PHAB,所以AAPH,依据是;因为ABCD,PHAB,所以PHCD,依据是;所以C(),所以APC()+()A+C97(2)当点P,Q在线段EF上移动时(不包括E,F两点):如图2,APQ+PQCA+C+180成立吗?请说明理由;如图3,APM2MPQ,CQM2MQP,M+MPQ+PQM180,请直接写出M,A与C的数量关系二十四、解答题24如图1,在平面直角坐标系中
6、,且满足,过作轴于(1)求三角形的面积(2)发过作交轴于,且分别平分,如图2,若,求的度数(3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由二十五、解答题25如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”(1)如图1,在中,是的角平分线,求证:是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:在中,若,则是“准互余三角形”;若是“准互余三角形”,则;“准互余三角形”一定是钝角三角形其中正确的结论是_(填写所有正确说法的序号);(3)如图2,为直线上两点,点在直线外,且若是直线上一点,且是“准互余三角形”,请直接写出的度
7、数【参考答案】一、选择题1C解析:C【分析】根据算术平方根的的性质即可化简【详解】=2故选C【点睛】此题主要考查算术平方根,解题的关键是熟知算术平方根的性质2A【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解【详解】解:A、可以由一个“基本图案”平移得到,故本选项符合题意;B、不是由一个“基本图案”平移得到,故本选项解析:A【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解【详解】解:A、可以由一个“基本图案”平移得到,故本选项符合题意;B、不是由一个“基本图案”平移得到,故本选项不符合题意;C、可以由一个“基本图案”旋转得到,故本选项不符合题
8、意;D、可以由一个“基本图案”旋转得到,故本选项不符合题意故选:A【点睛】本题主要考查了图形的平移和旋转,准确分析判断是解题的关键3D【分析】应先判断点在第三象限内点的坐标的符号特点,进而找相应坐标【详解】解:第三象限的点的横坐标是负数,纵坐标也是负数,结合选项符合第三象限的点是(-2,-4)故选:D【点睛】本题主要考查了点在第三象限内点的坐标的符号特点四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4D【分析】根据等角的补角,平行线的性质,对顶角的性质,进行判断【详解】A. 等角的补角相等,是真命题,不符合题意;B. 平行于同一条直线的
9、两条直线平行,是真命题,不符合题意;C. 对顶角相等,是真命题,不符合题意;D. 两直线平行,同位角相等,原命题是假命题,符合题意;故选D【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的性质、对顶角的性质及补角的定义等知识5A【分析】分别过、作的平行线和,根据平行线的性质和角平分线的性质可用和分别表示出和,从而可找到和的关系,结合条件可求得【详解】解:如图,分别过、作的平行线和,又,故选:A【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即两直线平行同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,6D【分析】先根据在数轴上的直角三角形运用勾股定理可得
10、斜边长,即可得x的值,进而可得则的值,再根据立方根的定义即可求得其立方根【详解】根据图象:直角三角形两边长分别为2和1,x在数轴原点左面,则,则它的立方根为;故选:D【点睛】本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A点表示的实数7C【分析】根据A与B的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求A得度数【详解】解:两个角的两边分别平行,这两个角大小相等或互补,这两个角大小相等,如下图所示:由题意得,A=B,A=3B-40,A=B=20,这两个角互补,如下图所示:由题意得,综上所述,A的度数为20或125,故选:C【点睛】本题考查
11、了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系8B【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,解析:B【分析】观察探究规律发现A1(2,1),A2(3,0)A3(3,0),A4(5,2),A5(8,1),A6(9,0)A7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,利用周期变化规律即可求解【详解】解:由题意A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0)A
12、7(9,0),A8(11,2),发现4次一个循环,每个周期横坐标距离为6,20214=505.1, A2021的纵坐标与A1相同, 横坐标=5056+2=3032, A2021(3032,1), 故选B【点睛】本题主要考查坐标与图形的变化规律型问题,解题的关键是学会探究规律的方法九、填空题97【详解】试题分析:因为,所以49的算术平方根是7故答案为7考点:算术平方根的定义解析:7【详解】试题分析:因为,所以49的算术平方根是7故答案为7考点:算术平方根的定义十、填空题10【分析】根据点坐标关于y轴对称的变换规律即可得【详解】点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点关于y
13、轴对称的点的坐标是,故答案为:【点睛】本题考查了点坐标解析:【分析】根据点坐标关于y轴对称的变换规律即可得【详解】点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点关于y轴对称的点的坐标是,故答案为:【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y轴对称的变换规律是解题关键十一、填空题11(3,3)【分析】根据第二、四象限角平分线上点的坐标特征得到9a+3a0,然后解方程即可【详解】点P在第二、四象限角平分线上,9a+3a0,a6,A点的坐标解析:(3,3)【分析】根据第二、四象限角平分线上点的坐标特征得到9a+3a0,然后解方程即可【详解】点P在第二、四象限角平分线上,9
14、a+3a0,a6,A点的坐标为(3,3)故答案为:(3,3)【点睛】本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征十二、填空题12130【分析】先求出ABCADE50,再求出DEF18050130即可【详解】解:DEBC,ABCADE50(两直线平行,同位角相等),E解析:130【分析】先求出ABCADE50,再求出DEF18050130即可【详解】解:DEBC,ABCADE50(两直线平行,同位角相等),EFAB,ADE+DEF180(两直线平行,同旁内角互补),DEF18050130故答案为
15、:130【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键十三、填空题13【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性解析:【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质十四、填空题14【分析】由题干得到,将原式进行整理化简即可求解.【详解】,【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.解析:【分析】由题干得到
16、,将原式进行整理化简即可求解.【详解】,【点睛】本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.十五、填空题15(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标【详解】点P(2-m,m+1)在x轴上,m+1=0,解得:m=-1,2-m=3,P点坐标解析:(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标【详解】点P(2-m,m+1)在x轴上,m+1=0,解得:m=-1,2-m=3,P点坐标为(3,0),故答案为:(3,0)【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键十六、填空题16(134
17、6.5,)【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标【详解】解:是等边三角形,边长为1,观察图形可知,3个点一个循解析:(1346.5,)【分析】观察图形可知,3个点一个循环,每个循环向右移动2个单位,依此可求顶点A2021的坐标【详解】解:是等边三角形,边长为1,观察图形可知,3个点一个循环,每个循环向右移动2个单位202136731,67321346,故顶点A2021的坐标是(1346.5,)故答案为:(1346.5,)【点睛】本题考查了平面直角坐标系点的规律,等边三角形的性质,勾股定理,找到规律是解题的关键十七、解答题17(1);(2)5
18、.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案【详解】(1) =1+-2=(2)=3-4+解析:(1);(2)5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案【详解】(1) =1+-2=(2)=3-4+1-5=-5【点睛】此题主要考查了实数运算,正确化简各数是解题关键十八、解答题18(1)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案【详解】解:(1)=-11;(2)=解析:(1
19、)-11;(2)68【分析】(1)直接利用完全平方公式将原式变形进而得出答案;(2)直接利用完全平方公式将原式变形进而得出答案【详解】解:(1)=-11;(2)=68【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键十九、解答题19同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁解析:同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【
20、分析】根据同旁内角互补,两直线平行可得 CDEF,根据A=2利用同位角相等,两直线平行,ABCD,根据平行同一直线的两条直线平行可得ABCDEF根据平行线的性质可得A=AFE ,C=EFC,根据角的和可得 AFE =EFC+AFC 即可【详解】证明: 1+AFE=180 CDEF(同旁内角互补,两直线平行),A=2 ,( ABCD ) (同位角相等,两直线平行), ABCDEF(两条直线都与第三条直线平行,则这两直线也互相平行) A= AFE ,C= EFC,(两直线平行,内错角相等) AFE =EFC+AFC , A = C+AFC 故答案为同旁内角互补两直线平行;ABCD;同位角相等,两直
21、线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键二十、解答题20(1)(-2,6);(2)(,)或(8,-4)【分析】(1)根据平方根的意义得到a0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;(2)利用A(a,-解析:(1)(-2,6);(2)(,)或(8,-4)【分析】(1)根据平方根的意义得到a0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;(2)利用A(a,-a)和
22、B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),OAB的面积是DAB面积的2倍,则判断点A、点B在y轴的右侧,即a0,根据三角形面积公式得到,解方程得到a值,然后写出B点坐标【详解】解:(1)a没有平方根,a0,-a0,点B到x轴的距离是点A到x轴距离的3倍,a+b=4,解得:a=-2或a=1(舍),b=6,此时点B的坐标为(-2,6);(2)点A的坐标为(a,-a),点B坐标为(a,4-a),AB=4,AB与y轴平行,点D的坐标为(4,-2),OAB的面积是DAB面积的2倍,点A、点B在y轴的右侧,即a0,解得:a=或a=8,B点坐标为(,)或(8,-4)【点睛】
23、本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系也考查了三角形的面积公式和平方根的性质二十一、解答题21(1),;(2).【分析】(1)利用无理数的估值方法找到的取值范围,即可得到a、b的值;(2)将a、b代入求值.【详解】(1),(2)【点睛】本题考查无理数的整数部分解析:(1),;(2).【分析】(1)利用无理数的估值方法找到的取值范围,即可得到a、b的值;(2)将a、b代入求值.【详解】(1),(2)【点睛】本题考查无理数的整数部分与小数部分问题,掌握无理数的估值方法是关键.二十二、解答题22不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,
24、长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,故边长为设长方形宽为,则长为长方形面积,解得(负值舍去)长为即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键二十三、解答题23(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;CPH;
25、APH,CPH;(2)APQ+PQCA+C+180成立,理由见解答过程;3PMQ+A+C360解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)APQ+PQCA+C+180成立,理由见解答过程;3PMQ+A+C360【分析】(1)根据平行线的判定与性质即可完成填空;(2)结合(1)的辅助线方法即可完成证明;(3)结合(1)(2)的方法,根据APM2MPQ,CQM2MQP,PMQ+MPQ+PQM180,即可证明PMQ,A与C的数量关系【详解】解:过点P作直线PHAB,所以AAPH,依据是两直线平行,内错角相等;因为ABCD,PHAB,所以PHCD,
26、依据是平行于同一条直线的两条直线平行;所以C(CPH),所以APC(APH)+(CPH)A+C97故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;CPH;APH,CPH;(2)如图2,APQ+PQCA+C+180成立,理由如下:过点P作直线PHAB,QGAB,ABCD,ABCDPHQG,AAPH,CCQG,HPQ+GQP180,APQ+PQCAPH+HPQ+GQP+CQGA+C+180APQ+PQCA+C+180成立;如图3,过点P作直线PHAB,QGAB,MNAB,ABCD,ABCDPHQGMN,AAPH,CCQG,HPQ+GQP180,HPMPMN,GQMQMN,PMQH
27、PM+GQM,APM2MPQ,CQM2MQP,PMQ+MPQ+PQM180,APM+CQMA+C+PMQ2MPQ+2MQP2(180PMQ),3PMQ+A+C360【点睛】考核知识点:平行线的判定和性质熟练运用平行线性质和判定,添加适当辅助线是关键二十四、解答题24(1)4;(2)45;(3)P(0,1)或(0,3)【分析】(1)根据非负数的性质得到ab,ab40,解得a2,b2,则A(2,0),B(2,0),C(2,2),即可计算出解析:(1)4;(2)45;(3)P(0,1)或(0,3)【分析】(1)根据非负数的性质得到ab,ab40,解得a2,b2,则A(2,0),B(2,0),C(2,
28、2),即可计算出三角形ABC的面积4;(2)由于CBy轴,BDAC,则CABABD,即345690,过E作EFAC,则BDACEF,然后利用角平分线的定义可得到341,562,所以AED129045;(3)先根据待定系数法确定直线AC的解析式为yx1,则G点坐标为(0,1),然后利用SPACSAPGSCPG进行计算【详解】解:(1)由题意知:ab,ab40,解得:a2,b2, A(2,0),B(2,0),C(2,2),SABC;(2)CBy轴,BDAC,CABABD,345690,过E作EFAC,BDAC,BDACEF,AE,DE分别平分CAB,ODB,341,562,AED129045;(3
29、)存在理由如下:设P点坐标为(0,t),直线AC的解析式为ykxb,把A(2,0)、C(2,2)代入得:,解得,直线AC的解析式为yx1,G点坐标为(0,1),SPACSAPGSCPG|t1|2|t1|24,解得t3或1,P点坐标为(0,3)或(0,1)【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等二十五、解答题25(1)见解析;(2);(3)APB的度数是10或20或40或110【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;
30、(2);(3)APB的度数是10或20或40或110【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:2A+ABC=90;A+2APB=90;2APB+ABC=90;2A+APB=90,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案【详解】(1)证明:在中,BD是的角平分线,是“准互余三角形”;(2),是“准互余三角形”,故正确;, ,不是“准互余三角形”,故错误;设三角形的三个内角分别为,且,三角形是“准互余三角形”,或,“准互余三角形”一定是钝角三角形,故正确;综上所述,正确,故答案为
31、:;(3)APB的度数是10或20或40或110;如图,当2A+ABC=90时,ABP是“准直角三角形”,ABC=50,A=20,APB=110;如图,当A+2APB=90时,ABP是“准直角三角形”,ABC=50,A+APB=50,APB=40;如图,当2APB+ABC=90时,ABP是“准直角三角形”,ABC=50,APB=20;如图,当2A+APB=90时,ABP是“准直角三角形”,ABC=50,A+APB=50,所以A=40,所以APB=10;综上,APB的度数是10或20或40或110时,是“准互余三角形”【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解