1、人教版中学七年级下册数学期末考试试卷(附解析)一、选择题1的平方根是()A7B7CD2下列运动中,属于平移的是( )A冷水加热过程中,小气泡上升成为大气泡B急刹车时汽车在地面上的滑动C随手抛出的彩球运动D随风飘动的风筝在空中的运动3在平面直角坐标系中位于第二象限的点是( )ABCD4下列命题:平面内,垂直于同一条直线的两直线平行;经过直线外一点,有且只有一条直线与这条直线平行;垂线段最短;同旁内角互补其中,正确命题的个数有( )A3个B2个C1个D0个5如果,直线,则等于( )ABCD6如图,数轴上的点A所表示的数为x,则x210的立方根为()A10B10C2D27如图,平分,则( )A112
2、B126C136D1468如图,在平面直角坐标系xOy中,一只蚂蚁从原点O出发向右移动1个单位长度到达点P1;然后逆时针转向90移动2个单位长度到达点P2;然后逆时针转向90,移动3个单位长度到达点P3;然后逆时针转向90,移动4个单位长度到达点P4;,如此继续转向移动下去设点Pn(xn,yn),n1,2,3,则x1+x2+x3+x2021()A1B1010C1011D2021九、填空题9已知实数x,y满足+(y+1)2=0,则x-y的立方根是_十、填空题10将点先关于x轴对称,再关于y轴对称的点的坐标为_十一、填空题11如图,已知在四边形ABCD中,A=,C=,BF,DP为四边形ABCD的A
3、BC、ADC相邻外角的角平分线当、满足条件_时,BFDP十二、填空题12如图,则CAD的度数为_十三、填空题13如图是长方形纸带,将纸带沿折叠成图,再沿折叠成图,则图中的的度数是_十四、填空题14x)表示小于x的最大整数,如2.3)=2,4)=5,则下列判断:)=;x)x有最大值是0;x)x有最小值是1;xx)x,其中正确的是_ (填编号)十五、填空题15点是第四象限内一点,若点到两坐标轴的距离相等,则点的坐标为_十六、填空题16如图,一个点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,即,且每秒运动一个单位,到点用时2秒,到点用时6秒,到点用时12秒,
4、那么第421秒时这个点所在位置的坐标是_十七、解答题17计算:(1)(2)十八、解答题18求下列各式中x的值:(1)9x2250;(2)(x3)3270十九、解答题19如图,点,分别是、上的点,(1)对说明理由,将下列解题过程补充完整解:(已知)_(_)(已知)_(_)(_)(2)若比大,求的度数二十、解答题20如图, 在平面直角坐标系xOy中,三角形ABC三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点A、B、C的对应点分别为(1)在图中画出平移后的三角形; (2)写出点的坐标;(3)三角形ABC的面积
5、为 二十一、解答题21已知:是的整数部分,是的小数部分求:(1),值(2)的平方根二十二、解答题22小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍她不知能否裁得出来,正在发愁小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?二十三、解答题23如图1,已知直线CDEF,点A,B分别在直线CD与EF上P为两平行线间一点(1)若DAP40,FBP70,则APB (2)猜想DAP,FBP,APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:如图2,A
6、P1,BP1分别平分DAP,FBP,请你写出P与P1的数量关系,并说明理由;如图3,AP2,BP2分别平分CAP,EBP,若APB,求AP2B(用含的代数式表示)二十四、解答题24已知:直线,A为直线上的一个定点,过点A的直线交 于点B,点C在线段BA的延长线上D,E为直线上的两个动点,点D在点E的左侧,连接AD,AE,满足AEDDAE点M在上,且在点B的左侧(1)如图1,若BAD25,AED50,直接写出ABM的度数 ; (2)射线AF为CAD的角平分线 如图2,当点D在点B右侧时,用等式表示EAF与ABD之间的数量关系,并证明; 当点D与点B不重合,且ABMEAF150时,直接写出EAF的
7、度数 二十五、解答题25如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间【参考答案】一、选择题1C解析:C【分析】根据一个正数有两个平方根,它们互为相反数解答即可【详解】,7的平方根是,的平方根是故选:C【点睛
8、】本题考查了平方根的概念,掌握一个正数有两个平方根,它们互为相反数;0的平方根是0,解题关键是先求出49的算术平方根2B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,解析:B【详解】解:A、气泡在上升的过程中变大,不属于平移;B、急刹车时汽车在地面上的滑动属于平移;C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移;D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转故选B【点睛】此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一
9、致,并且移动的距离相等3B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B(-2,3)符合,故选:B【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4A【分析】根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案【详解】平面内,垂直于同一条直线的两直线平行;故正确,经过直线外一点,有且只有一条直线与这条直线平行,故正确垂线段最短,故正确,两直线平行,同旁内
10、角互补,故错误,正确命题有,共3个,故选:A【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理5B【分析】先求DFE的度数,再利用平角的定义计算求解即可【详解】ABCD,DFE=A=65,EFC=180-DFE =115,故选B【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键6D【分析】先根据在数轴上的直角三角形运用勾股定理可得斜边长,即可得x的值,进而可得则的值,再根据立方根的定义即可求得其立方
11、根【详解】根据图象:直角三角形两边长分别为2和1,x在数轴原点左面,则,则它的立方根为;故选:D【点睛】本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A点表示的实数7D【分析】利用平行线的性质及角平分线的定义求解即可;【详解】解:,平分,,故选:D【点睛】本题考查了平行线的性质,角平分线的定义;熟练掌握平行线的性质,并能进行推理计算是解决问题的关键8A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果【详解】解:根据平面坐标系结合各点横坐标得出:、解析:A【分析】根据各点横坐
12、标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果【详解】解:根据平面坐标系结合各点横坐标得出:、的值分别为:1,1,3,3,;,故选:A【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律九、填空题9【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1,x-y=3,3的立方根是【点睛】本题考查的是解析:【分析】先根据非负数的性质列出方程求出x、y的值求x-y的立方根.【详解】解:由题意得,x-2=0,y+1=0,解得x=2,y=-1
13、,x-y=3,3的立方根是【点睛】本题考查的是非负数的性质和立方根的概念,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键十、填空题10(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解【详解】设关于x轴对称的点为则点的坐标为解析:(1,-4)【分析】直角坐标系中,关于x轴对称的两点,横坐标相同,纵坐标互为相反数关于y轴对称的两点,纵坐标相同,横坐标互为相反数,由此即可求解【详解】设关于x轴对称的点为则点的坐标为(-1,-4)设点和点关于y轴对称则的坐标为(1,-4)故答案为:(1,-4)【点
14、睛】本题考查了关于坐标轴对称的点的坐标特征,关于x轴对称的两点,横坐标相同,纵坐标互为相反数,关于y轴对称的两点,纵坐标相同,横坐标互为相反数十一、填空题11=【详解】试题解析: 当BFDP时, 即: 整理得: 故答案为解析:=【详解】试题解析: 当BFDP时, 即: 整理得: 故答案为十二、填空题12【分析】根据两直线平行内错角相等可得,再根据角之间的关系即可求出的度数【详解】解:,故答案为:【点睛】本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解析:【分析】根据两直线平行内错角相等可得,再根据角之间的关系即可求出的度数【详解】解:,故答案为:【点睛】本题主要考查了平行线的相
15、关知识,熟练运用两直线平行内错角相等是解答此题的关键十三、填空题13180-3【分析】由ADBC,利用平行线的性质可得出BFE和CFE的度数,再结合CFG=CFE-BFE及CFE=CFG-BFE,即可求出CFE的度数【详解】解:A解析:180-3【分析】由ADBC,利用平行线的性质可得出BFE和CFE的度数,再结合CFG=CFE-BFE及CFE=CFG-BFE,即可求出CFE的度数【详解】解:ADBC,BFE=DEF=,CFE=180-DEF=180-,图中CFG=CFE-BFE=180-=180-2,图中CFE=CFG-BFE=180-2-=180-3故答案为:180-3【点睛】本题考查了平
16、行线的性质,牢记“两直线平行,内错角相等”及“两直线平行,同旁内角互补”是解题的关键十四、填空题14,【分析】x) 示小于x的最大整数,由定义得x)xx)+1,)-8,)=-9即可,由定义得x)x变形可以直接判断,由定义得xx)+1,变式即可判断,由定义解析:,【分析】x) 示小于x的最大整数,由定义得x)xx)+1,)-8,)=-9即可,由定义得x)x变形可以直接判断,由定义得xx)+1,变式即可判断,由定义知x)xx)+1,由xx)+1变形的x-1x),又x)x联立即可判断【详解】由定义知x)xx)+1,)=-9不正确,x)表示小于x的最大整数,x)x,x) -x0没有最大值,不正确xx)
17、+1,x)-x-1,x)x有最小值是1,正确,由定义知x)xx)+1,由xx)+1变形的x-1x),x)x,xx)x,正确故答案为:【点睛】本题考查实数数的新规定的运算 ,阅读题给的定义,理解其含义,掌握性质x)xx)+1,利用性质解决问题是关键十五、填空题15【分析】根据点是第四象限内一点且到两坐标轴距离相等,点M的横坐标与纵坐标互为相反数列方程求出a的值,再求解即可【详解】点是第四象限内一点且到两坐标轴距离相等,点M的横坐标与纵坐标互为解析:【分析】根据点是第四象限内一点且到两坐标轴距离相等,点M的横坐标与纵坐标互为相反数列方程求出a的值,再求解即可【详解】点是第四象限内一点且到两坐标轴距
18、离相等,点M的横坐标与纵坐标互为相反数解得, M点坐标为(4,-4)故答案为(4,-4)【点睛】本题考查了点的坐标,理解点是第四象限内一点且到两坐标轴距离相等,则点M的横坐标与纵坐标互为相反数是解题的关键十六、填空题16【分析】由题目中所给的点运动的特点找出规律,即可解答【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,解析:【分析】由题目中所给的点运动的特点找出规律,即可解答【详解】由题意可知这点移动的速度是1个单位长度/每秒,设这点为(x,y)到达(1,0)时用了3秒,到达(2,0)时用了4秒,从(2,0)到
19、(0,2)有四个单位长度,则到达(0,2)时用了4+4=8秒,到(0,3)时用了9秒;从(0,3)到(3,0)有六个单位长度,则到(3,0)时用9+6=15秒;依此类推到(4,0)用16秒,到(0,4)用16+8=24秒,到(0,5)用25秒,到(6,0)用36秒,到(6,6)时用36+6=42秒,可得在x轴上,横坐标为偶数时,所用时间为x2秒,在y轴上时,纵坐标为奇数时,所用时间为y2秒,2020=400第421秒时这个点所在位置的坐标为(19,20),故答案为:(19,20)【点睛】本题主要考查了点的坐标的变化规律,得出运动变化的规律是解决问题的关键十七、解答题17(1);(2)【分析】直
20、接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键解析:(1);(2)【分析】直接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键十八、解答题18(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可【详解】(1)解:(2)解:【点睛】本题主要考查了实数的解析:(1)x=;(2)x=-6【分析】(1)经过移项,系数化为1后,再开平方即可;(2)移项后开立方,再移项运算即可【详解】(1)解:(2)解:【点
21、睛】本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键十九、解答题19(1)BFD;两直线平行,同位角相等;BFD;等量代换;内错角相等,两直线平行;(2)70【分析】(1)根据平行线的性质得出ABFD,求出BFDFDE,根据平行线的判定得出即可解析:(1)BFD;两直线平行,同位角相等;BFD;等量代换;内错角相等,两直线平行;(2)70【分析】(1)根据平行线的性质得出ABFD,求出BFDFDE,根据平行线的判定得出即可;(2)根据平行线的性质得出A+AED180,ABFD,再求出AEDA40,即可求出答案【详解】(1)证明:DFAC(已知),ABFD(两直线平行,同位角相
22、等),AFDE(已知),FDEBFD(等量代换),DEAB(内错角相等,两直线平行);故答案为:BFD;两直线平行,同位角相等;BFD;等量代换;内错角相等,两直线平行;(2)解:DFAC,ABFD,AED比BFD大40,AEDBFD40,AEDA40,AED40+A,DEAB,A+AED180,A+40+A180,A70,BFD70【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:两直线平行,同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,反之亦然二十、解答题20(1)见解析;(2);(3)【分析】(1)根据平移规律确定,的坐标
23、,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面解析:(1)见解析;(2);(3)【分析】(1)根据平移规律确定,的坐标,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可【详解】(1)如图所示,三角形即为所求;(2)若把三角形ABC向上平移 3 个单位长度,再向左平移1个单位长度得到三角形,点的坐标为(-3,1);(3)三角形ABC的面积为:45-24-13-35=7【点睛】本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌
24、握平移规律和运用切割法求面积是解题的关键二十一、解答题21(1),(2)【分析】(1)首先得出接近的整数,进而得出a,b的值;(2)根据平方根即可解答【详解】 ,整数部分,小数部分(2)原式,则的平方根为【点睛】此题解析:(1),(2)【分析】(1)首先得出接近的整数,进而得出a,b的值;(2)根据平方根即可解答【详解】 ,整数部分,小数部分(2)原式,则的平方根为【点睛】此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键二十二、解答题22不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断
25、【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,故边长为设长方形宽为,则长为长方形面积,解得(负值舍去)长为即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键二十三、解答题23(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内
26、错角相等可得APM=解析:(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=DAP,再根据平行公理求出CDEF然后根据两直线平行,内错角相等可得MPB=FBP,最后根据APM+MPB=DAP+FBP等量代换即可得证;(2)结论:APB=DAP+FBP (3)根据(2)的规律和角平分线定义解答; 根据的规律可得APB=DAP+FBP,AP2B=CAP2+EBP2,然后根据角平分线的定义和平角等于180列式整理即可得解【详解】(1)证明:过P作PMCD, APM=DAP(两直线平
27、行,内错角相等),CDEF(已知), PMCD(平行于同一条直线的两条直线互相平行), MPB=FBP(两直线平行,内错角相等), APM+MPB=DAP+FBP(等式性质) 即APB=DAP+FBP=40+70=110 (2)结论:APB=DAP+FBP 理由:见(1)中证明 (3)结论:P=2P1; 理由:由(2)可知:P=DAP+FBP,P1=DAP1+FBP1,DAP=2DAP1,FBP=2FBP1, P=2P1 由得APB=DAP+FBP,AP2B=CAP2+EBP2, AP2、BP2分别平分CAP、EBP, CAP2=CAP,EBP2=EBP, AP2B=CAP+EBP, = (1
28、80-DAP)+ (180-FBP), =180- (DAP+FBP), =180- APB, =180- 【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线二十四、解答题24(1);(2),见解析;或【分析】(1)由平行线的性质可得到:,再利用角的等量代换换算即可;(2)设,利用角平分线的定义和角的等量代换表示出对比即可;分类讨论点在的左右两侧的情况,解析:(1);(2),见解析;或【分析】(1)由平行线的性质可得到:,再利用角的等量代换换算即可;(2)设,利用角平分线的定义和角的等量代换表示出对比即可;分类讨论点在的左右两侧的情况,
29、运用角的等量代换换算即可【详解】解:(1)设在上有一点N在点A的右侧,如图所示:,(2)证明:设,为的角平分线, 当点在点右侧时,如图:由得:又当点在点左侧,在右侧时,如图:为的角平分线,又当点和在点左侧时,设在上有一点在点的右侧如图:此时仍有,综合所述:或【点睛】本题主要考查了平行线的性质,角平分线的定义,角的等量代换等,灵活运用平行线的性质和角平分线定义等量代换出角的关系是解题的关键二十五、解答题25(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性解析:
30、(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,D
31、EF60,ED平分PEF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA
32、180DFE150,HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键