1、人教版中学七年级数学下册期末综合复习含答案一、选择题1如图,1和2是同位角的是( )ABCD2在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( )ABCD3点(4,2)所在的象限是()A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A对顶角相等B两条直线被第三条直线所截,同位角相等C在同一平面内,垂直于同一条直线的两条直线互相平行D在同一平面内,过直线外一一点有且只有一条直线与已知直线平行5如图,直线ABCD,AECE,1125,则C等于()A35B45C50D556下列说法:两个无理数的和可能是有理数:任意一个有理数都可以用数轴上的点表示;是三次二项式;
2、立方根是本身的数有0和1;其中正确的是( )ABCD7如图,AB/CD,EBF2ABE,ECF3DCE,设ABE,E,F,则,的数量关系是()A4+360B3+360C4360D323608如图,在平面直角坐标系中,一动点从原点出发,向右平移3个单位长度到达点,再向上平移6个单位长度到达点,再向左平移9个单位长度到达点,再向下平移12个单位长度到达点,再向右平移15个单位长度到达点按此规律进行下去,该动点到达的点的坐标是( )ABCD九、填空题9已知x,y为实数,且,则x-y=_十、填空题10已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是_十一、填空题11三角形ABC中,A=60,则
3、内角B,C的角平分线相交所成的角为_十二、填空题12如图,点M为CD上一点,MF平分CME若157,则EMD的大小为_度十三、填空题13如图,将长方形纸片沿折叠,交于点E,得到图1,再将纸片沿折叠得到图2,若,则图2中的为_十四、填空题14现定义一种新运算:对任意有理数a、b,都有ab=a2b,例如32=322=7,2(1)=_十五、填空题15如果点P(m+3,m2)在x轴上,那么m_十六、填空题16如图,在平面直角坐标系中,动点按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,按这样的运动规律,经过第2021次运动后,动点的坐标是_十七、解答题17(1)(
4、2)(3)十八、解答题18求下列各式中的x值:(1)16(x+1)225; (2)8(1x)3125十九、解答题19如图,三角形中,点,分别是,上的点,且,(1)求证:;(完成以下填空)证明:(已知)(_),又(已知)(等量代换),(_)(2)与的平分线交于点,交于点,若,则_;已知,求(用含的式子表示)二十、解答题20如图,已知在平面直角坐标系中的位置如图所示(1)写出三个顶点的坐标;(2)求出的面积;(3)在图中画出把先向左平移5个单位,再向上平移2个单位后所得的二十一、解答题21数学张老师在课堂上提出一个问题:“通过探究知道:,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁
5、能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法现请你根据小明的说法解答:(1)的小数部分是多少,请表示出来(2)a为的小数部分,b为的整数部分,求的值(3)已知8+=x+y,其中x是一个正整数,0y1,求的值二十二、解答题22如图,用两个面积为的小正方形纸片剪拼成一个大的正方形(1)大正方形的边长是_;(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由二十三、解答题23如图,直线,点是、之间(不在直线,上)的
6、一个动点(1)如图1,若与都是锐角,请写出与,之间的数量关系并说明理由;(2)把直角三角形如图2摆放,直角顶点在两条平行线之间,与交于点, 与交于点,与交于点,点在线段上,连接,有,求的值;(3)如图3,若点是下方一点,平分, 平分,已知,求的度数二十四、解答题24如图,已知AMBN,A64点P是射线AM上一动点(与点A不重合),BC、BD分别平分ABP和PBN,分别交射线AM于点C,D(1)ABN的度数是 ;AMBN,ACB ;(2)求CBD的度数;(3)当点P运动时,APB与ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点
7、P运动到使ACBABD时,ABC的度数是 二十五、解答题25己知:如图,直线直线,垂足为,点在射线上,点在射线上(、不与点重合),点在射线上且,过点作直线.点在点的左边且 (1)直接写出的面积 ;(2)如图,若,作的平分线交于,交于,试说明; (3)如图,若,点在射线上运动,的平分线交的延长线于点,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.【参考答案】一、选择题1A解析:A【分析】根据同位角的定义,逐一判断选项,即可【详解】解:A. 1和2是同位角,故该选项符合题意;B. 1和2不是同位角,故该选项不符合题意;C. 1和2不是同位角,故该选项不符合题意;D. 1和2不
8、是同位角,故该选项不符合题意,故选 A【点睛】本题主要考查同位角的定义,掌握“两条直角被第三条直线所截,在两条直线的同侧,在第三条直线的同旁的两个角,叫做同位角”,是解题的关键2D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来
9、分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向3B【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答【详解】解:点(-4,2)所在的象限是第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据对顶角的性质、直线的性质、平行线的性质进行判断,即可得出答案【详解】A、对顶角相等;真命
10、题;B、两条直线被第三条直线所截,同位角相等;假命题;只有两直线平行时同位角才相等;C、在同一平面内,垂直于同一条直线的两条直线互相平行真命题;D、在同一平面内,过直线外一一点有且只有一条直线与已知直线平行;真命题;故选:B【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题正确的命题叫做真命题,错误的命题叫做假命题5A【分析】过点E作EFAB,则EFCD,利用“两直线平行,内错角相等”可得出BAEAEF及CCEF,结合AEF+CEF90可得出BAE+C90,由邻补角互补可求出BAE的度数,进而可求出C的度数【详解】解:过点E作EFAB,则EFCD,如图所示EFAB,BAEAEFEFCD
11、,CCEFAECE,AEC90,即AEF+CEF90,BAE+C901125,1+BAE180,BAE18012555,C905535故选:A【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键6A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可【详解】两个无理数的和可能是有理数,说法正确如:和是无理数,0是有理数有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确是二次二项式,说法错误立方根是本身的数有0和,说法错误综上,说法正确的是故选:A【点睛】本题考查了无理数的运算、数轴的定义
12、、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键7A【分析】由EBF2ABE,可得EBF2由EBF+BEC+F+ECF360,可得ECF360(2+),那么DCE由BECM+DCE,可得MBECDCE根据AB/CD,得ABEM,进而推断出4+360【详解】解:如图,分别延长BE、CD并交于点MAB/CD,ABEMEBF2ABE,ABE,EBF2EBF+BEC+F+ECF360,ECF360(2+)又ECF3DCE,DCE又BECM+DCE,MBECDCE4+360故选:A【点睛】本题考查了平行线的性质,三角形的外角性质,角度的计算,构造辅助线转化角度是解题的关键8C【分析】求出A1
13、(3,0),A5(9,-6),A9(15,-12),A13(21,-18),探究规律可得A2021(3033,-3030),从而求解【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),探究规律可得A2021(3033,-3030),从而求解【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),可以看出,9=,15=,21=,得到规律:点A2n+1的横坐标为,其中的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,即,故A2021的横坐标为,A2021的纵坐标为,A2021(
14、3033,-3030),故选:C【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型九、填空题9-1【分析】根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可【详解】解:,解得:x-y=-1故答案为:-1【点睛】此题考查的是非负性的应用,掌握算术平方解析:-1【分析】根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可【详解】解:,解得:x-y=-1故答案为:-1【点睛】此题考查的是非负性的应用,掌握算术平方根的非负性和平方的非负性是解决此题的关键十、填空题10【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关
15、于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴的对称点为,则点P的纵坐标为1点关于轴的对称点为,则点P的横坐标为2则点P的坐标为故答案为:【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键十一、填空题11120和60【详解】试题分析:因为三角形的内角和是180度,所以B+C=180-A=180-60=120,
16、又因为DFE=BFC,BFC=180-(FBC+FCB),解析:120和60【详解】试题分析:因为三角形的内角和是180度,所以B+C=180-A=180-60=120,又因为DFE=BFC,BFC=180-(FBC+FCB),因为角平分线CD、EF相交于F,所以FBC+FCB=(B+C)2=1202=60,再代入DFE=BFC=180-(FBC+FCB),即可解答试题解析:B+C=180-A=180-60=120,又因为DFE=BFC,BFC=180-(FBC+FCB),因为角平分线CD、EF相交于F,所以FBC+FCB=(B+C)2=1202=60,DFE=180-(FBC+FCB),=1
17、80-60,=120;DFE的邻补角的度数为:180-120=60考点:角的度量十二、填空题12【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=解析:【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=157,MF平分CME,CME=2CMF114,EMD=180-CME66,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.十三、填空题
18、13126【分析】在图1中,求出BCE,根据折叠的性质和外角的性质得到EDG,在图2中结合折叠的性质,利用CDG=EDG-CDE可得结果【详解】解:在图1中,AEC=36,解析:126【分析】在图1中,求出BCE,根据折叠的性质和外角的性质得到EDG,在图2中结合折叠的性质,利用CDG=EDG-CDE可得结果【详解】解:在图1中,AEC=36,ADBC,BCE=180-AEC=144,由折叠可知:ECD=(180-144)2=18,CDE=AEC-ECD=18,DEF=AEC=36,EDG=180-36=144,在图2中,CDG=EDG-CDE=126,故答案为:126【点睛】本题考查了平行线
19、的性质,折叠问题以及三角形的外角性质,利用三角形的外角性质,找出EDG的度数是解题的关键十四、填空题145【解析】利用题中的新定义可得:2(1)=4(1)=4+1=5.故答案为:5点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键解析:5【解析】利用题中的新定义可得:2(1)=4(1)=4+1=5.故答案为:5点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键十五、填空题15【分析】根据x轴上的点的纵坐标等于0列式计算即可得解【详解】点P(m+3,m2)在x轴上,m20,解得m2故答案为:2【点睛】此题考查点的坐标,熟记x轴上的点的纵解析:【分析】根据x轴上的点的纵
20、坐标等于0列式计算即可得解【详解】点P(m+3,m2)在x轴上,m20,解得m2故答案为:2【点睛】此题考查点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键十六、填空题16【分析】根据图象结合动点P第一次、第二次、第三次、第四次运动后的坐标特点可发现各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解【详解】解:由图象可得:动点按图中箭头解析:【分析】根据图象结合动点P第一次、第二次、第三次、第四次运动后的坐标特点可发现各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,由此规律可求解【详解】解:由图象可得:动点按图中箭头所示方向运动,第1次从原点运动到点,第2次接
21、着运动到点,第3次接着运动到点,第4次接着运动到,可知各点的横坐标与运动次数相同,纵坐标是按2,0,1,0循环,经过第2021次运动后,动点P的坐标为;故答案为【点睛】本题主要考查点的坐标规律,解题的关键是根据题意得到点的坐标基本规律十七、解答题17(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要考查了实解析:(1);(2);(3)【分析】(1)先化简后计算即可;(2)先化简后计算即可;(3)首先去括号,然后再合并即可【详解】解:(1)原式(2)原式(3)原式【点睛】此题主要
22、考查了实数运算,关键是掌握数的开方,正确化简各数十八、解答题18(1)或;(2)【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答【详解】解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以,解析:(1)或;(2)【分析】(1)根据平方根,即可解答;(2)根据立方根,即可解答【详解】解:(1)等式两边都除以16,得. 等式两边开平方,得. 所以,得. 所以, (2)等式两边都除以8,得. 等式两边开立方,得. 所以,【点睛】本题考查平方根、立方根,解题关键是熟记平方根、立方根.十九、解答题19(1)两直线平行,同位角相等;同位角相等,两直线平行;(2);【分析
23、】(1)根据平行线的判定及性质即可证明;(2)由已知得,由(1)知,可得,在中,由对顶角得,由三角形内角和定理即可解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2);【分析】(1)根据平行线的判定及性质即可证明;(2)由已知得,由(1)知,可得,在中,由对顶角得,由三角形内角和定理即可计算出;根据条件,可得,由,得出,通过等量代换得,由三角形内角和定理即可求出【详解】解:证明(1)证;证明:(已知),(两直线平行,同位角相等),又(已知)(等量代换),(同位角相等,两直线平行),故答案是:两直线平行,同位角相等;同位角相等,两直线平行(2)与的平分线交于点,交于点,且,由(1)
24、知,在中,故答案是:;,由(1)知,在中,故答案是:【点睛】本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解二十、解答题20(1);(2);(3)图见解析【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得【详解】解:解析:(1);(2);(3)图见解析【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得【详解】解:(1)由
25、点在平面直角坐标系中的位置:;(2)的面积为;(3)如图所示,即为所求【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键二十一、解答题21(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入解析:(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入求值即可【详解】解:(1)12的整数部分是1的小数部分是1;(
26、2)12,23的整数部分是1,的整数部分是2的小数部分是1;a=1,b=2=1(3)的小数部分是1y=1x=8+(1)=9=19【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键二十二、解答题22(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再解析:(1)4;(2)不能,理由见解析【分析】(1)根据已知正方形的面积求出大正方形的边长即可;(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形
27、的长与正方形边长比较大小再判断即可【详解】解:(1)两个正方形面积之和为:28=16(cm2),拼成的大正方形的面积=16(cm2),大正方形的边长是4cm;故答案为:4;(2)设长方形纸片的长为2xcm,宽为xcm,则2xx=14,解得:,2x=24,不存在长宽之比为且面积为的长方形纸片【点睛】本题考查了算术平方根,能够根据题意列出算式是解此题的关键二十三、解答题23(1)见解析;(2);(3)75【分析】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以解析:(1)见解析;(2);(3)75【分析
28、】(1)根据平行线的性质、余角和补角的性质即可求解(2)根据平行线的性质、对顶角的性质和平角的定义解答即可(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可【详解】解:(1)C=1+2,证明:过C作lMN,如下图所示,lMN,4=2(两直线平行,内错角相等),lMN,PQMN,lPQ,3=1(两直线平行,内错角相等),3+4=1+2,C=1+2;(2)BDF=GDF,BDF=PDC,GDF=PDC,PDC+CDG+GDF=180,CDG+2PDC=180,PDC=90-CDG,由(1)可得,PDC+CEM=C=90,AEN=CEM,(3)设BD交MN于JBC平分PBD,AM平分CA
29、D,PBC=25,PBD=2PBC=50,CAM=MAD,PQMN,BJA=PBD=50,ADB=AJB-JAD=50-JAD=50-CAM,由(1)可得,ACB=PBC+CAM,ACB+ADB=PBC+CAM+50-CAM=25+50=75【点睛】本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关系二十四、解答题24(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由
30、平行线的性质,两直线平行,同旁内角互补可直接求出;由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明CBDABN,即可求出结果;(3)不变,APB:ADB2:1,证APBPBN,PBN2DBN,即可推出结论;(4)可先证明ABCDBN,由(1)ABN116,可推出CBD58,所以ABC+DBN58,则可求出ABC的度数【详解】解:(1)AM/BN,A64,ABN180A116,故答案为:116;AM/BN,ACBCBN,故答案为:CBN;(2)AM/BN,ABN+A180,ABN18064116,ABP+PBN116,BC平分ABP,BD平分PBN,ABP2CBP
31、,PBN2DBP,2CBP+2DBP116,CBDCBP+DBP58;(3)不变,APB:ADB2:1,AM/BN,APBPBN,ADBDBN,BD平分PBN,PBN2DBN,APB:ADB2:1;(4)AM/BN,ACBCBN,当ACBABD时,则有CBNABD,ABC+CBDCBD+DBNABCDBN,由(1)ABN116,CBD58,ABC+DBN58,ABC29,故答案为:29【点睛】本题考查了角平分线的定义,平行线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等二十五、解答题25(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为BCD的高为OC,所
32、以SBCD=CDOC,(2)利用CFE+CBF=90,OBE+OEB=90,求出CEF=解析:(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为BCD的高为OC,所以SBCD=CDOC,(2)利用CFE+CBF=90,OBE+OEB=90,求出CEF=CFE(3)由ABC+ACB=2DAC,H+HCA=DAC,ACB=2HCA,求出ABC=2H,即可得答案详解:(1)SBCD=CDOC=32=3(2)如图,ACBC,BCF=90,CFE+CBF=90直线MN直线PQ,BOC=OBE+OEB=90BF是CBA的平分线,CBF=OBECEF=OBE,CFE+CBF=CEF+OBE,CEF=CFE(3)如图,直线lPQ,ADC=PADADC=DACCAP=2DACABC+ACB=CAP,ABC+ACB=2DACH+HCA=DAC,ABC+ACB=2H+2HCACH是,ACB的平分线,ACB=2HCA,ABC=2H,=点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解