1、人教版中学七年级数学下册期末综合复习题含答案一、选择题1的算术平方根是()A3B3C9D92下列四幅图案中,通过平移能得到图案E的是( )AABBCCDD3如图,小手盖住的点的坐标可能为( )ABCD4下列命题是假命题的是()A同位角相等,两直线平行B三角形的一个外角等于与它不相邻的两个内角的和C平行于同一条直线的两条直线平行D平面内,到一个角两边距离相等的点在这个角的平分线上5如果,直线,则等于( )ABCD6下列算式,正确的是( )ABCD7已知直线,将一块含30角的直角三角板按如图所示方式放置(ABC30),其中A,B两点分别落在直线m,n上,若125,则2的度数为()A55B45C30
2、D258在平面直角坐标系中,对于点P(x,y),我们把点P(-y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A4的伴随点为A4,这样依次得到点A1,A2,A3,An,若点A1的坐标为(2,4),点A2021的坐标为( )A(-3,3)B(-2,2)C(3,-1)D(2,4)九、填空题9若,则的值为十、填空题10若过点的直线与轴平行,则点关于轴的对称点的坐标是_十一、填空题11如图,在ABC中,ACB90,AD是ABC的角平分线,BC10cm,BD:DC3:2,则点D到AB的距离为_十二、填空题12如图,直线,则_十三、填空题13如图,在中,点D是的中点,点E在
3、上,将沿折叠,若点B的落点在射线上,则与所夹锐角的度数是_十四、填空题14大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是可以用表示的小数部分若,其中x是整数,且,写出xy的相反数_十五、填空题15下列四个命题:直角坐标系中的点与有序实数对一一对应;若大于0,不小于0,则点在第三象限;过一点有且只有一条直线与已知直线平行;若,则的算术平方根是其中,是真命题的有_(写出所有真命题的序号)十六、填空题16如图,一只跳蚤在第一象限及x轴、y轴上跳动,第一秒它从原点跳动到点(0,1),第二秒它从点(0,1)
4、跳到点(1,1),然后接着按图中箭头所示方向跳动即(0,0)(0,1) (1,1) (1,0),每秒跳动一个单位长度,那么43秒后跳蚤所在位置的坐标是_十七、解答题17计算:(1) (2)十八、解答题18求下列各式中的x值:(1)(x1)24;(2)(2x+1)3+640;(3)x33十九、解答题19如图,点F在线段AB上,点E、G在线段CD上,ABCD(1)若BC平分ABD,D100,求ABC的度数;解:ABCD(已知),ABD+D180( )D100(已知),ABD80又BC平分ABD,(已知),ABCABD ( )(2)若12,求证:AEFG(不用写依据)二十、解答题20如图,的顶点坐标
5、分别为:,将平移得到,使点的对应点为(1)可以看作是由先向左平移 个单位,再向下平移 个单位得到的;(2)在图中作出,并写出点、的对应点、的坐标;(3)求的面积二十一、解答题21数学活动课上,张老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,晶晶同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用表示它的小数部分”张老师说:“晶晶同学的说法是正确的,因为的整数部分是,将这个数减去其整数部分,差就是小数部分,”请你解答:已知,其中是一个整数,且,请你求出的值二十二、解答题22有一块正方形钢板,面积为16平方米(1)求正方形钢板的边长(2
6、)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由(参考数据:,)二十三、解答题23已知直线,点P为直线、所确定的平面内的一点(1)如图1,直接写出、之间的数量关系 ;(2)如图2,写出、之间的数量关系,并证明;(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,求的度数二十四、解答题24问题情境:如图1,ABCD,PAB=130,PCD=120,求APC的度数小明的思路是:如图2,过P作PEAB,通过平行线性质来求APC(1)按小明的思路,易求得APC的度数为 度;(2)如图3,
7、ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=试判断CPD、之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系二十五、解答题25在中,射线平分交于点,点在边上运动(不与点重合),过点作交于点.(1)如图1,点在线段上运动时,平分.若,则_;若,则_;试探究与之间的数量关系?请说明理由;(2)点在线段上运动时,的角平分线所在直线与射线交于点.试探究与之间的数量关系,并说明理由.【参考答案】一、选择题1A解析:A【分析】先计算,再计算的算术平方根即可【详解】,的算术
8、平方根为故选A【点睛】本题考查了求一个数的算术平方根,先计算是解题的关键2B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这
9、种图形的平行移动,叫做平移变换,简称平移平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离3C【分析】根据各象限内点的坐标特征判断即可【详解】由图可知,小手盖住的点在第四象限,点的横坐标为正数,纵坐标为负数,(2,3)符合其余都不符合故选:C【点睛】本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键4D【分析】利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项【详解】解:A、同位角相等,两直线平行,正确,是真命题,不符合题意;B、三角形的一个外角等于与
10、它不相邻的两个内角的和,正确,是真命题,不符合题意;C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;故选:D【点睛】考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大5B【分析】先求DFE的度数,再利用平角的定义计算求解即可【详解】ABCD,DFE=A=65,EFC=180-DFE =115,故选B【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键6A【分析】根据平方根、立方根及算术平方根的概念逐一计算即可得
11、答案【详解】A.,计算正确,故该选项符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算错误,不符合题意,D.,故该选项计算错误,不符合题意,故选:A【点睛】本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键7A【分析】易求的度数,再利用平行线的性质即可求解【详解】解:,直线,故选:A【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键8D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(2,4),解析:D【分析】根据“伴随点”的定义依次求
12、出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(2,4),A2(3,3),A3(2,2),A4(3,1),A5(2,4),依此类推,每4个点为一个循环组依次循环,202145051,点A2021的坐标与A1的坐标相同,为(2,4)故选:D【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键九、填空题9【解析】解:有题意得,则解析:【解析】解:有题意得,则十、填空题10【分析】根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点
13、的坐标【详解】解:MN与x轴平行,两点纵坐标相同,a=-5,即M为(-3,-5)点M关于y轴的对解析:【分析】根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标【详解】解:MN与x轴平行,两点纵坐标相同,a=-5,即M为(-3,-5)点M关于y轴的对称点的坐标为:(3,-5)故答案为(3,-5) 【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键十一、填空题114cm【详解】BC=10cm,BD:DC=3:2,BD=6cm,CD=4cm,AD是ABC的角平分线,ACB=90,点D到AB的距离等于DC,即点D到AB的距离等于4cm解
14、析:4cm【详解】BC=10cm,BD:DC=3:2,BD=6cm,CD=4cm,AD是ABC的角平分线,ACB=90,点D到AB的距离等于DC,即点D到AB的距离等于4cm十二、填空题12120【分析】延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解【详解】解:如图,延长AB交直线b于点E, , ,故答案为: 【点睛】解析:120【分析】延长AB交直线b于点E,可得,则 ,再由,可得 ,即可求解【详解】解:如图,延长AB交直线b于点E, , ,故答案为: 【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键十三、填空题13【分析】根据折叠可得三角形全等,根据全等
15、三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数【详解】如下图,连接DE,与解析:【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数【详解】如下图,连接DE,与相交于点O,将 BDE 沿 DE 折叠,,又D为BC的中点,,即与所夹锐角的度数是故答案为:【点睛】本题考察了轴对称的性质、全等三角形的性质、中点的性质、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键十四、填空题14【分析】根据题意得方法,估算的大
16、小,求出的值,进而求出xy的值,再通过相反数的定义,即可得到答案【详解】解:的整数部分是2由题意可得的整数部分即,则小数部分则xy的相反解析:【分析】根据题意得方法,估算的大小,求出的值,进而求出xy的值,再通过相反数的定义,即可得到答案【详解】解:的整数部分是2由题意可得的整数部分即,则小数部分则xy的相反数为故答案为【点睛】本题主要考查二次根式的估算,解题的关键是估算无理数的小数部分和整数部分十五、填空题15【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题;若大于0,不小于0,则0,0,点在第三象限解析:【
17、分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题;若大于0,不小于0,则0,0,点在第三象限或x轴的负半轴上;故此命题是假命题;过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;若,则x=1,y=4,则的算术平方根是,正确,故此命题是真命题故答案为:【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键十六、填空题16(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标【详解】解:跳蚤跳到(1,1)位置用时12=2秒,下一步
18、向下跳解析:(5,6)【分析】根据题意判断出跳蚤跳到(n,n)位置用时n(n+1)秒,然后根据43秒时n是偶数,即可判断出所在位置的坐标【详解】解:跳蚤跳到(1,1)位置用时12=2秒,下一步向下跳动;跳到(2,2)位置用时23=6秒,下一步向左跳动;跳到(3,3)位置用时34=12秒,下一步向下跳动;跳到(4,4)位置用时45=20秒,下一步向左跳动;由以上规律可知,跳蚤跳到(n,n)位置用时n(n+1)秒,当n为奇数时,下一步向下跳动;当n为偶数时,下一步向左跳动;第67=42秒时跳蚤位于(6,6)位置,下一步向左跳动,则第43秒时,跳蚤需从(6,6)向左跳动1个单位到(5,6),故答案为
19、:(5,6)【点睛】此题考查了点的坐标问题,解题的关键是读懂题意,能够正确确定点运动的规律,从而可以得到到达每个点所用的时间十七、解答题17(1)1.2;(2)【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,解析:(1)1.2;(2)【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案.试题解析:(1)原式 (2)原式 十八、
20、解答题18(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(解析:(1)x3或x1;(2)x2.5;(3)x1.5【分析】(1)直接开平方进行解答;(2)先移项,再开立方进行解答(3)先移项,系数化为1,再开平方法进行解答【详解】解:(1)开方得:x12或x12,解得:x3或x1;(2)方程整理得:(2x+1)364,开立方得:2x+14,解得:x2.5;(3)方程整理得:x3,开立方得:x1.5【点睛】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;
21、0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根式正数,一个负数的立方根是负数,0的立方根式0十九、解答题19(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出ABD=80,再根据角平分线的定义求解即可;(2)根据平行线的性质得到1=FGC,等解析:(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出ABD=80,再根据角平分线的定义求解即可;(2)根据平行线的性质得到1=FGC,等量代换得到2=FGC,即可判定AEFG【详解】(1)ABCD(已知),ABD+D180(两直线平行,同旁
22、内角互补),D100(已知),ABD80,又BC平分ABD(已知),ABCABD40(角平分线的定义)故答案为:两直线平行,同旁内角互补;40;角平分线的定义;(2)证明:ABCD,1FGC,又12,2FGC,AEFG【点睛】此题考查了平行线的判定与性质,熟记“两直线平行,同旁内角互补”、“两直线平行,内错角相等”、“同位角相等,两直线平行”是解题的关键二十、解答题20(1)6;6;(2)图见解析,;(3)【分析】(1)根据平移的性质,由对应点的坐标即可得到平移的方式;(2)根据平移的方式,即可画出平移后的图形(3)利用间接求面积的方法,即可求出三角形解析:(1)6;6;(2)图见解析,;(3
23、)【分析】(1)根据平移的性质,由对应点的坐标即可得到平移的方式;(2)根据平移的方式,即可画出平移后的图形(3)利用间接求面积的方法,即可求出三角形的面积【详解】解:(1)平移后对应点为,可以看作是由先向左平移6个单位,再向下平移6个单位得到的故答案为:6;6;(2)作出如图所示点、的对应点、的坐标分别为:,;(3)将三角形补成如图所示的正方形,则其面积为:【点睛】本题考查了平移的性质,解题的关键是掌握平移的性质,正确求出平移的方式,画出平移的图形二十一、解答题2126【分析】先估算出的范围,再求出x,y的值,即可解答【详解】解:,的整数部分是1,小数部分是的整数部分是9,小数部分是,x=9
24、,y=,=39+(-)2019=27+(解析:26【分析】先估算出的范围,再求出x,y的值,即可解答【详解】解:,的整数部分是1,小数部分是的整数部分是9,小数部分是,x=9,y=,=39+(-)2019=27+(-1)2019=27-1=26【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出的范围二十二、解答题22(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设
25、长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,正方形钢板的边长是米;(2)设长方形的长宽分别为米、米,则,长方形长是米,而正方形的边长为4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实际应用,灵活的利用算术平方根表示正方形和长方形的边长是解题的关键.二十三、解答题23(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360解析:(1)A+C+APC=360;(2)见解析;(3)55【
26、分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360;(2)作PQAB,易得ABPQCD,根据两直线平行,内错角相等,即可证得APC=A+C;(3)由(2)知,APC=PAB-PCD,先证BEF=PQB=110、PEG=FEG,GEH=BEG,根据PEH=PEG-GEH可得答案【详解】解:(1)A+C+APC=360如图1所示,过点P作PQAB,A+APQ=180,ABCD,PQCD,C+CPQ=180,A+APQ+C+CPQ=360,即A+C+APC=360;(2)APC=A+C,如图2,作PQAB,A=APQ,ABCD,PQC
27、D,C=CPQ,APC=APQ-CPQ,APC=A-C;(3)由(2)知,APC=PAB-PCD,APC=30,PAB=140,PCD=110,ABCD,PQB=PCD=110,EFBC,BEF=PQB=110,EFBC,BEF=PQB=110,PEG=PEF,PEG=FEG,EH平分BEG,GEH=BEG,PEH=PEG-GEH=FEG-BEG=BEF=55【点睛】此题考查了平行线的性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用二十四、解答题24(1)110;(2)CPD=+,见解析;(3)当P在BA延长线时,CPD=-;当P在AB延长线上时,CPD=-
28、【分析】(1)过P作PEAB,通过平行线性质求A解析:(1)110;(2)CPD=+,见解析;(3)当P在BA延长线时,CPD=-;当P在AB延长线上时,CPD=-【分析】(1)过P作PEAB,通过平行线性质求APC即可;(2)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(3)画出图形,根据平行线的性质得出=DPE,=CPE,即可得出答案【详解】解:(1)过点P作PEAB,ABCD,PEABCD,A+APE=180,C+CPE=180,PAB=130,PCD=120,APE=50,CPE=60,APC=APE+CPE=110故答案为110;
29、(2)CPD=+,理由是:如图3,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=DPE+CPE=+;(3)当P在BA延长线时,CPD=-,理由是:如图4,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=CPE-DPE =-;当P在AB延长线时,CPD=-,理由是:如图5,过P作PEAD交CD于E,ADBC,ADPEBC,=DPE,=CPE,CPD=DPE -CPE =-【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键二十五、解答题25(1)115,110;,证明见解析
30、;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=解析:(1)115,110;,证明见解析;(2),证明见解析.【解析】【分析】(1)根据角平分线的定义求得CAG=BAC=50;再由平行线的性质可得EDG=C=30,FMD=GAC=50;由三角形的内角和定理求得AFD的度数即可;已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;即可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;
31、再由三角形的内角和定理可求得AFD=110;AFD=90+B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,FDM=EDG;由DE/AC,根据平行线的性质可得EDG=C,FMD=GAC;由此可得FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;再由三角形的内角和定理可得AFD=90+B;(2)AFD=90-B,已知AG平分BAC,DF平分EDB,根据角平分线的定义可得CAG=BAC,NDE=EDB,即可得FDM=NDE=EDB;由DE/AC,根据平行线的性质可得EDB=C,FMD=GAC;即可得到FDM=NDE=C,所以FDM
32、 +FMD =C+BAC=(BAC+C)=(180-B)=90-B;再由三角形外角的性质可得AFD=FDM +FMD=90-B.【详解】(1)AG平分BAC,BAC=100,CAG=BAC=50;,C=30,EDG=C=30,FMD=GAC=50;DF平分EDB,FDM=EDG=15;AFD=180-FMD-FDM=180-50-15=115;B=40,BAC+C=180-B=140;AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=140=70;AFD=180-(FDM +F
33、MD)=180-70=110;故答案为115,110;AFD=90+B,理由如下:AG平分BAC,DF平分EDB,CAG=BAC,FDM=EDG,DE/AC,EDG=C,FMD=GAC;FDM +FMD=EDG +GAC=C+BAC=(BAC+C)=(180-B)=90-B;AFD=180-(FDM +FMD)=180-(90-B)=90+B;(2)AFD=90-B,理由如下:如图,射线ED交AG于点M,AG平分BAC,DF平分EDB,CAG=BAC,NDE=EDB,FDM=NDE=EDB,DE/AC,EDB=C,FMD=GAC;FDM=NDE=C,FDM +FMD =C+BAC=(BAC+C)=(180-B)=90-B;AFD=FDM +FMD=90-B.【点睛】本题考查了角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质,根据角平分线的定义、平行线的性质、三角形的内角和定理及三角形外角的性质确定各角之间的关系是解决问题的关键.