1、人教版七年级数学下册期末复习题(含答案)一、选择题1下列事件中,不是必然事件的是( )A同旁内角互补B对顶角相等C等腰三角形是轴对称图形D垂线段最短2春意盎然,在婺外校园里下列哪种运动不属于平移( )A树枝随着春风摇曳B值日学生拉动可移动黑板C行政楼电梯的升降D晚自修后学生两列队伍整齐排列笔直前行3在平面直角坐标系中,点所在的象限是( )A第一象限B第二象限C第三象限D第四象限4下列命题是假命题的是( )A两个锐角的和是钝角B两条直线相交成的角是直角,则两直线垂直C两点确定一条直线D三角形中至少有两个锐角5直线,直线与,分别交于点,若,则的度数为( )ABCD6下列各组数中,互为相反数的是(
2、)A与B与C与D与7如图,已知直线,点为直线上一点,为射线上一点若,交于点,则的度数为( ) A45B55C60D758如图,将边长为1的正方形沿轴正方向连续翻转2020次,点依次落在点、的位置上,则点的坐标为( )ABCD九、填空题9的算术平方根是_十、填空题10若与关于轴对称,则_十一、填空题11如图,AD是ABC的角平分线,DEAB,垂足为E,若ABC的面积为15,DE3,AB6,则AC的长是 _ 十二、填空题12如图所示,已知ABCD,EF平分CEG,180,则2的度数为_十三、填空题13如图,将四边形纸片ABCD沿MN折叠,点A、D分别落在点A1、D1处若12130,则BC_十四、填
3、空题14阅读下列解题过程:计算:解:设则由-得,运用所学到的方法计算:_.十五、填空题15如图,点A(1,0),B(2,0),C是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_十六、填空题16育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2第n次移动到点An,则OA2A2021的面积是 _十七、解答题17计算下列各题:(1); (2)-;(3)-+.十八、解答题18求下列各式中的的值(1); (2)十九、解答题
4、19完成下面的证明:如图,点、分别是三角形的边、上的点,连接,连接交于点,求证:证明:(已知)(_)又(已知)(_)(_)(_)二十、解答题20三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,(1)将向右平移4个单位长度得到,画出平移后的;(2)将向下平移5个单位长度得到,画出平移后的;(3)直接写出三角形的面积为_平方单位(直接写出结果)二十一、解答题21数学张老师在课堂上提出一个问题:“通过探究知道:,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用来表示它的小数部分,张老师夸奖小明真
5、聪明,肯定了他的说法现请你根据小明的说法解答:(1)的小数部分是多少,请表示出来(2)a为的小数部分,b为的整数部分,求的值(3)已知8+=x+y,其中x是一个正整数,0y1,求的值二十二、解答题22某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m2的正方形场地改建成300m2的长方形场地,且其长、宽的比为5:3(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由二十三、解答题23已知,ABCD点M在AB上,点N在CD上(1)如图1中,BME、E
6、、END的数量关系为: ;(不需要证明)如图2中,BMF、F、FND的数量关系为: ;(不需要证明)(2)如图3中,NE平分FND,MB平分FME,且2EF180,求FME的度数;(3)如图4中,BME60,EF平分MEN,NP平分END,且EQNP,则FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ的度数二十四、解答题24已知两条直线l1,l2,l1l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足(1)如图,求证:ADBC;(2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分CAD;()如图,当时,求DAM的度数;()如图,当时,求ACD
7、的度数二十五、解答题25【问题探究】如图1,DFCE,PCE=,PDF=,猜想DPC与、之间有何数量关系?并说明理由;【问题迁移】如图2,DFCE,点P在三角板AB边上滑动,PCE=,PDF=.(1)当点P在E、F两点之间运动时,如果=30,=40,则DPC= .(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出DPC与、之间的数量关系,并说明理由(图1) (图2)【参考答案】一、选择题1A解析:A【分析】必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件,据此判断即可解答【详解】解:A、不是必然事件,当前提条件是两直线平行时,才会得到同旁内角互补,符
8、合题意;B、为必然事件,不合题意;C、为必然事件,不合题意;D、为必然事件,不合题意故选A【点睛】本题考查了必然事件的定义,同时也考查了同旁内角,对顶角的性质,等腰三角形的性质,垂线段的性质必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件2A【分析】根据平移的特点可得答案【详解】解:A、树枝随着春风摇曳是旋转运动;B、值日学生拉动可移动黑板是平移运动;C、行政楼电梯的升降是平移运动;D、晚自修后学生两列队伍整齐排列笔直解析:A【分析】根据平移的特点可得答案【详解】解:A、树枝随着春风摇曳是旋转运动;B、值日学生拉动可移动黑板是平移运动;C、行政楼电梯的升降是平移运动;D、晚自修
9、后学生两列队伍整齐排列笔直前行是平移运动;故选A【点睛】此题主要考查了生活中的平移现象,关键是掌握平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等3A【分析】根据在各象限内,点坐标的符号规律即可得【详解】解:,在平面直角坐标系中,点所在的象限是第一象限,故选:A【点睛】本题考查了点坐标的符号规律,熟练掌握点坐标的符号规律是解题关键4A【分析】选出假命题只要举出反例即可,两个锐角的和是钝角,反例:两个锐角分别是有20、30,和是50,还是锐角,因此是假命题【详解】A.两个锐角的和是钝角是假命题,如两个锐角分别是20、30,而它们的和是50,还是锐角,不是钝角;B.两条
10、直线相交成的角是直角则两直线垂直是真命题;C.两点确定一条直线是真命题;D.三角形中至少有两个锐角是真命题故选:A【点睛】本题通过判断真假命题来考查了解各类知识的概念和意义,熟练掌握各类知识是解题的关键5B【分析】由对顶角相等得DFE=55,然后利用平行线的性质,得到BEF=125,即可求出的度数【详解】解:由题意,根据对顶角相等,则,;故选:B【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出6C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得【详解】A、,则与不是相反数,此项不符题意;B、与不是相反数,此项不符题意;C、,则与互
11、为相反数,此项符合题意;D、,则与不是相反数,此项不符题意;故选:C【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键7C【分析】利用,及平行线的性质,得到,再借助角之间的比值,求出,从而得出的大小【详解】解:,故选:【点睛】本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想8D【分析】探究规律,利用规律即可解决问题【详解】解:由题意,每4个一循环,则2021个纵坐标等于1轴,坐标应该是,故选:D【点睛】本题考查了点的坐标的规律变化解析:D【分析】探究规律,利用规律
12、即可解决问题【详解】解:由题意,每4个一循环,则2021个纵坐标等于1轴,坐标应该是,故选:D【点睛】本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点向右前行4个单位九、填空题93【分析】根据算术平方根的性质解答即可【详解】解:,0.09的算术平方根是0.3故答案为:0.3【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根解析:3【分析】根据算术平方根的性质解答即可【详解】解:,0.09的算术平方根是0.3故答案为:0.3【点睛】本题考查了算术平方根,解题的关键是化简后再求算术平方根十、填空题10【分析】根
13、据关于y轴对称的点的坐标特征,即可求出m的值【详解】解:A(m,-3)与B(4,-3)关于y轴对称,m=-4,故答案为:-4【点睛】本题主要考查了关于y轴对称点的坐解析:【分析】根据关于y轴对称的点的坐标特征,即可求出m的值【详解】解:A(m,-3)与B(4,-3)关于y轴对称,m=-4,故答案为:-4【点睛】本题主要考查了关于y轴对称点的坐标,解题的关键在于能够熟练掌握,如果两点关于y轴对称,那么这两个点的横坐标互为相反数,纵坐标相等十一、填空题114【分析】过点D作DFAC,则由AD是ABC的角平分线,DFAC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】
14、过点D作DFACAD是AB解析:4【分析】过点D作DFAC,则由AD是ABC的角平分线,DFAC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】过点D作DFACAD是ABC的角平分线,DFAC, DEAB,DE=DF,又三角形的面积的,即,解得AC=4【点睛】主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.十二、填空题1250【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,解析:50【分析】由角平分线的定义,结合平行线的性质,易求2的度
15、数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,故答案为:50【点睛】本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系十三、填空题13115【分析】先根据1+2=130得出AMN+DNM的度数,再由四边形内角和定理即可得出结论【详解】解:1+2=130,AMN+DNM= =115A+解析:115【分析】先根据1+2=130得出AMN+DNM的度数,再由四边形内角和定理即可得出结论【详解】解:1+2=130,AMN+DNM= =115A+D+(AMN+DNM)=360,A+D+(B+C)=
16、360,B+C=AMN+DNM=115故答案为:115【点睛】本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键十四、填空题14.【分析】设S=,等号两边都乘以5可解决【详解】解:设S=则5S=-得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的解析:.【分析】设S=,等号两边都乘以5可解决【详解】解:设S=则5S=-得4S=,所以S=.故答案是:.【点睛】本题考查了有理数运算中的规律性问题,此题参照例子,采用类比的方法就可以解决十五、填空题15(0,4)或(0,-4)【分析】设ABC边AB上的高为h,利用三角形的面积列式求出h,再
17、分点C在y轴正半轴与负半轴两种情况解答【详解】解:设ABC边AB上的高为h,A(1,0),解析:(0,4)或(0,-4)【分析】设ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答【详解】解:设ABC边AB上的高为h,A(1,0),B(2,0),AB=2-1=1,ABC的面积=1h=2,解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键十六、填空题16【分析
18、】由题意知OA4n2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运动4次一个循环解析:【分析】由题意知OA4n2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2202145051,A2021与A1是对应点,A2020与A0是对应点OA202050521010,A1A20211010A2A20211010-1=1009则OA2A2019的面积是11009,故答案为:
19、【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得十七、解答题17(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)=5;(2)- =-4=-2;(3)-+=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)=5;(2)- =-4=-2;(3)-+=-6+5+3=2.【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.十八、解答题18(1)或;(2)【分析】(1)两边开平方即可得出两个一元一次方
20、程,求出方程的解即可;(2)先整理变形为(x2)38,开立方根得出x22,求出即可【详解】解:(1),或解析:(1)或;(2)【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x2)38,开立方根得出x22,求出即可【详解】解:(1),或;(2),【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x2a(a0)或x3b的形式,再根据定义开平方或开立方,注意开平方时,有两个解十九、解答题19两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案【详解】证明:(已
21、知)(两直线平行,同位角相等)解析:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的性质与判定进行证明即可得到答案【详解】证明:(已知)(两直线平行,同位角相等)又(已知)(等量代换)(同位角相等,两直线平行)(两直线平行,同旁内角互补)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)见解析;(2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、的对应解析:(1)见解析;(
22、2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积【详解】解:(1)平移后的三角形如下图所示;(2)平移后的三角形如下图所示;(3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积,SABC【点睛】本题考查了作图平移变换,解题的关键是要掌握图形的平
23、移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差二十一、解答题21(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入解析:(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入求值即可【详解】解:(1)12的整数部分是1的小数部分是1;(2)12,23的整数部分是1,的整数部分是2的小
24、数部分是1;a=1,b=2=1(3)的小数部分是1y=1x=8+(1)=9=19【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键二十二、解答题22(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为解析:(1)原来正方形场地的周长为80m;(2)这些铁栅栏够用【分析】(1)正方形边长=面积的算术平方根,周长=边长4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am,则长为5am,计算出长方形的长与
25、宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用【详解】解:(1)=20(m),420=80(m),答:原来正方形场地的周长为80m;(2)设这个长方形场地宽为3am,则长为5am由题意有:3a5a=300,解得:a=,3a表示长度,a0,a=,这个长方形场地的周长为 2(3a+5a)=16a=16(m),80=165=1616,这些铁栅栏够用【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长二十三、解答题23(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线
26、的性质可求解;过F作FHAB解析:(1)BMEMENEND;BMFMFNFND;(2)120;(3)不变,30【分析】(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(BME+END)+BMF-FND=180,可求解BMF=60,进而可求解;(3)根据平行线的性质及角平分线的定义可推知FEQ=BME,进而可求解【详解】解:(1)过E作EHAB,如图1,BMEMEH,ABCD,HECD,ENDHEN,MENMEHHENBMEEND,即BMEMENEND如图2,过F作FHAB,BM
27、FMFK,ABCD,FHCD,FNDKFN,MFNMFKKFNBMFFND,即:BMFMFNFND故答案为BMEMENEND;BMFMFNFND(2)由(1)得BMEMENEND;BMFMFNFNDNE平分FND,MB平分FME,FMEBMEBMF,FNDFNEEND,2MENMFN180,2(BMEEND)BMFFND180,2BME2ENDBMFFND180,即2BMFFNDBMFFND180,解得BMF60,FME2BMF120;(3)FEQ的大小没发生变化,FEQ30由(1)知:MENBMEEND,EF平分MEN,NP平分END,FENMEN(BMEEND),ENPEND,EQNP,N
28、EQENP,FEQFENNEQ(BMEEND)ENDBME,BME60,FEQ6030【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键二十四、解答题24(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得解析:(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得;()设,从而可得,先根据角
29、平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得【详解】(1),又,;(2)(),由(1)已得:,;()设,则,平分,由(1)已得:,即,解得,又,【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键二十五、解答题25DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)化成图形,根据平行线的性质得出=DPE,=CPE,即可得出答案【问题探究】解:DPC=+ 如图,过P作PHDF DFCE,PCE=1=, PDF=2DPC=2+1=+ 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,DPC= - DFCE,PCE=1=, DPC=1-FDP=1-DPC= - 如图2,DPC= -DFCE,PDF=1= DPC=1-ACE=1-DPC= -