资源描述
2022年七年级数学(上册)期末试卷及答案(真题)
班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.的相反数是( )
A. B.2 C. D.
2.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为( )
A.66° B.104° C.114° D.124°
3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )
A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣5
4.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
A.120元 B.100元 C.80元 D.60元
5.若数a使关于x的不等式组无解,且使关于x的分式方程有正整数解,则满足条件的整数a的值之积为( )
A.28 B.﹣4 C.4 D.﹣2
6.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )
A.点M B.点N C.点P D.点Q
7.在同一平面内,设a、b、c是三条互相平行的直线,已知a与b的距离为4cm,b与c的距离为1cm,则a与c的距离为( )
A.1cm B.3cm C.5cm或3cm D.1cm或3cm
8.在数轴上,a所表示的点总在b所表示的点的右边,且|a|=6,|b|=3,则a-b的值为( )
A.-3 B.-9 C.-3或-9 D.3或9
9.估计+1的值应在( )
A.3和4之间 B.4和5之间 C.5和6之间 D.6和7之间
10.已知是二元一次方程组的解,则的值为
A.-1 B.1 C.2 D.3
二、填空题(本大题共6小题,每小题3分,共18分)
1.因式分解:__________.
2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A,B,C三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE∥CD),若∠A=120°,∠B=150°,则∠C的度数是________.
3.已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标________.
4.如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是________.
5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.
6.如果,那么代数式的值是________.
三、解答题(本大题共6小题,共72分)
1.解下列方程
(1) (2)
2.先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣2,b=
3.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.
(1)求反比例函数y=的表达式;
(2)求点B的坐标;
(3)求△OAP的面积.
4.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.
(1)∠1与∠2有什么关系,为什么?
(2)BE与DF有什么关系?请说明理由.
5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
6.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.
尝试 (1)求前4个台阶上数的和是多少?
(2)求第5个台阶上的数x是多少?
应用 求从下到上前31个台阶上数的和.
发现 试用含k(k为正整数)的式子表示出数“1”所在的台阶数.
参考答案
一、选择题(本大题共10小题,每题3分,共30分)
1、B
2、C
3、A
4、C
5、B
6、C
7、C
8、D
9、B
10、A
二、填空题(本大题共6小题,每小题3分,共18分)
1、
2、150°
3、(4,0)或(﹣4,0)
4、-1
5、40°
6、
三、解答题(本大题共6小题,共72分)
1、(1)(2)x=0
2、4ab,﹣4.
3、(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=5.
4、(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.
5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.
6、(1)3;(2)第5个台阶上的数x是﹣5;应用:从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.
7 / 7
展开阅读全文