1、人教版中学七年级数学下册期末解答题综合复习题含答案一、解答题1如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长2已知在的正方形网格中,每个小正方形的边长为1(1)计算图中正方形的面积与边长(2)利用图中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和3工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)4如图,阴影部分(正方形)的四个顶
2、点在55的网格格点上(1)请求出图中阴影部分(正方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值5求下图的方格中阴影部分正方形面积与边长二、解答题6如图,将一张长方形纸片沿对折,使落在的位置;(1)若的度数为,试求的度数(用含的代数式表示);(2)如图,再将纸片沿对折,使得落在的位置若,的度数为,试求的度数(用含的代数式表示);若,的度数比的度数大,试计算的度数7如图1,点在直线、之间,且(1)求证:;(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;(3)如图3,点是直线、外一点,且满足,与交于点已知,且,则的度数为_(请直接写出答案,用含的式子表示)8阅读下面材料
3、:小亮同学遇到这样一个问题:已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到BED求证:BEDB+D(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整证明:过点E作EFAB,则有BEF ABCD, ,FED BEDBEF+FEDB+D(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分ABC,DE平分ADC,且BE,DE所在的直线交于点E如图1,当点B在点A的左侧时,若ABC60,ADC70,求BED的度数;如图2,当点B在点A的右侧时,设ABC,ADC,请你求出BED的度数(用含有,的式
4、子表示)9汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足假定这一带水域两岸河堤是平行的,即,且(1)求、的值;(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?10已知,如图:射线分别与直线、相交于、两点,的角平分线
5、与直线相交于点,射线交于点,设,且(1)_,_;直线与的位置关系是_;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由三、解答题11感知如图,求的度数小乐想到了以下方法,请帮忙完成推理过程解:(1)如图,过点P作(_),_(平行于同一条直线的两直线平行),_(两直线平行,同旁内角互补),即探究如图,求的度数;应用(1)如图,在探究的条件下,的平分线和的平分线交于点G,则的度数是_(2)
6、已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E设,请直接写出的度数(用含的式子表示)12为更好地理清平行线相关角的关系,小明爸爸为他准备了四根细直木条、,做成折线,如图1,且在折点B、C、D处均可自由转出 (1)如图2,小明将折线调节成,判断是否平行于,并说明理由;(2)如图3,若,调整线段、使得求出此时的度数,要求画出图形,并写出计算过程(3)若,请直接写出此时的度数13已知,交AC于点E,交AB于点F(1)如图1,若点D在边BC上,补全图形;求证:(2)点G是线段AC上的一点,连接FG,DG若点G是线段AE的中点,请你在图2中补
7、全图形,判断,之间的数量关系,并证明;若点G是线段EC上的一点,请你直接写出,之间的数量关系14如图,两个形状,大小完全相同的含有30、60的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转(1)如图1,DPC 度我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10逆时针旋转一周(0旋转360),问旋转时间t为多少时,这两个三角形是“孪生三角形”(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3/秒,同时三角板PBD的边PB从PM处开始绕点P
8、逆时针旋转,转速2/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动)设两个三角板旋转时间为t秒,以下两个结论:为定值;BPN+CPD为定值,请选择你认为对的结论加以证明15如图1,D是ABC延长线上的一点,CEAB(1)求证:ACDA+B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分ECD,FA平分HAD,若BAD70,求F的度数(3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分QGD交AH于R,QN平分AQG交AH于N,QMGR,猜想MQN与ACB的关系,说明理由四、解答题16如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个
9、动点(不与点、重合),连接、(1)当点与点、在一直线上时,则_(2)若点与点、不在一直线上,试探索、之间的关系,并证明你的结论17在ABC中,BAC90,点D是BC上一点,将ABD沿AD翻折后得到AED,边AE交BC于点F(1)如图,当AEBC时,写出图中所有与B相等的角: ;所有与C相等的角: (2)若CB50,BADx(0x45) 求B的度数;是否存在这样的x的值,使得DEF中有两个角相等若存在,并求x的值;若不存在,请说明理由18模型与应用.(模型)(1)如图,已知ABCD,求证1MEN2360. (应用)(2)如图,已知ABCD,则1+2+3+4+5+6的度数为 如图,已知ABCD,则
10、1+2+3+4+5+6n的度数为 (3)如图,已知ABCD,AM1M2的角平分线M1 O与CMnMn1的角平分线MnO交于点O,若M1OMnm在(2)的基础上,求2+3+4+5+6n1的度数(用含m、n的代数式表示)19如图,平分,平分,请判断与的位置关系并说明理由;如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由 如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由20如图,
11、在中,与的角平分线交于点.(1)若,则 ;(2)若,则 ;(3)若,与的角平分线交于点,的平分线与的平分线交于点,的平分线与的平分线交于点,则 .【参考答案】一、解答题1正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答【详解】解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答【详解】解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,取正值,可得,答:正方形纸板的边长是18厘米【点评】本题考查了算术平方根的实际应用,解
12、题的关键是熟悉正方形的面积公式2(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论【详解】解:(1)正方形的面积为44431=10则正方形的边长为;(2)如下图所示,正方形的面积为44422=8,所以该正
13、方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点正方形的边长为弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键3(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可【详解】解:(解析:(1)6分米;(2)满足【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方
14、形的长和宽和6比较即可【详解】解:(1)正方形工料的边长为分米;(2)设长方形的长为4a分米,则宽为3a分米则,解得:,长为,宽为满足要求【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题4(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案解析:(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值
15、,然后得出答案详解:解:(1)S=25-12=13, 边长为 ,(2)a=3,b= -3 原式=9+-3-=6点睛:本题主要考查的就是无理数的估算,属于中等难度的题型解决这个问题的关键就是根据正方形的面积得出边长58;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边长=【点睛】本题考查了算
16、术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根记为二、解答题6(1) ;(2) ;【分析】(1)由平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1) ;(2) ;【分析】(1)由平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;由(1)知,BFE = ,由可知:,再根据条件和折叠的性质得到,即可求解【详解】解:(1)如图,由题意可知,由折叠可知
17、(2)由题(1)可知 ,再由折叠可知:,;由可知:,由(1)知,又的度数比的度数大,【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键7(1)见解析;(2)10;(3)【分析】(1)过点E作EFCD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HECD,设 由(1)得ABCD解析:(1)见解析;(2)10;(3)【分析】(1)过点E作EFCD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HECD,设 由(1)得ABCD,
18、则ABCDHE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数;(3)过点N作NPCD,过点M作QMCD,由(1)得ABCD,则NPCDABQM,根据和,得出根据CDPNQM,DENB,得出即根据NPAB,得出再由,得出由ABQM,得出因为,代入的式子即可求出【详解】(1)过点E作EFCD,如图,EFCD, , EFAB,CDAB;(2)过点E作HECD,如图,设 由(1)得ABCD,则ABCDHE,又平分,即解得:即;(3)过点N作NPCD,过点M作QMCD,如图,由(1)得ABCD,则NPCDABQM,NPCD,CDQM,,又, , 又PNAB, ,
19、又ABQM, 【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系8(1)B,EF,CD,D;(2)65;180【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图1,过点E作EFAB,当点B在点A的左侧时,根据ABC60,解析:(1)B,EF,CD,D;(2)65;180【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图1,过点E作EFAB,当点B在点A的左侧时,根据ABC60,ADC70,参考小亮思考问题的方法即可求BED的度数;如图2,过点E作EFAB,当点B在点A的右
20、侧时,ABC,ADC,参考小亮思考问题的方法即可求出BED的度数【详解】解:(1)过点E作EFAB,则有BEFB,ABCD,EFCD,FEDD,BEDBEF+FEDB+D;故答案为:B;EF;CD;D;(2)如图1,过点E作EFAB,有BEFEBAABCD,EFCDFEDEDCBEF+FEDEBA+EDC即BEDEBA+EDC,BE平分ABC,DE平分ADC,EBAABC30,EDCADC35,BEDEBA+EDC65答:BED的度数为65;如图2,过点E作EFAB,有BEF+EBA180BEF180EBA,ABCD,EFCDFEDEDCBEF+FED180EBA+EDC即BED180EBA+
21、EDC,BE平分ABC,DE平分ADC,EBAABC,EDCADC,BED180EBA+EDC180答:BED的度数为180【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质9(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的解析:(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的要求,t15
22、0,在这个时间段内A可以转3次,分情况讨论【详解】解:(1)又,;(2)设灯转动时间为秒,如图,作,而 ,(3)设灯转动秒,两灯的光束互相平行依题意得当时,两河岸平行,所以两光线平行,所以所以,即:,解得;当时,两光束平行,所以两河岸平行,所以所以,解得;当时,图大概如所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光束互相平行【点睛】这道题考察的是平行线的性质和一元一次方程的应用根据平行线的性质找到对应角列出方程是解题的关键10(1)35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等
23、可证ABCD;(2解析:(1)35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2)先根据内错角相等证GHPN,再根据同旁内角互补和等量代换得出FMN+GHF=180;(3)作PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ERFQ,得FQM1=R,设PER=REB=x,PM1R=RM1B=y,得出EPM1=2R,即可得=2【详解】解:(1)(-35)2+|-|=0,=35,PFM=MFN=35,EMF=35,EMF=MFN,ABCD;(2)FMN+GHF=180;理由:
24、由(1)得ABCD,MNF=PME,MGH=MNF,PME=MGH,GHPN,GHM=FMN,GHF+GHM=180,FMN+GHF=180;(3)的值不变,为2,理由:如图3中,作PEM1的平分线交M1Q的延长线于R,ABCD,PEM1=PFN,PER=PEM1,PFQ=PFN,PER=PFQ,ERFQ,FQM1=R,设PER=REB=x,PM1R=RM1B=y,则有:,可得EPM1=2R,EPM1=2FQM1,=2【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键三、解答题11感知见解析;探究70;应用(1)35;(2)或【分析】感知过点
25、P作PMAB,根据平行线的性质得到1=AEP,2+PFD=180,求出2的度数,结合1可得结果;解析:感知见解析;探究70;应用(1)35;(2)或【分析】感知过点P作PMAB,根据平行线的性质得到1=AEP,2+PFD=180,求出2的度数,结合1可得结果;探究过点P作PMAB,根据ABCD,PMCD,进而根据平行线的性质即可求EPF的度数;应用(1)如图所示,在探究的条件下,根据PEA的平分线和PFC的平分线交于点G,可得G的度数;(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解【详解】解:感知如图,过点P作PMAB,1=AEP=40(两直线平行,内错角相等)ABCD,
26、PMCD(平行于同一条直线的两直线平行),2+PFD=180(两直线平行,同旁内角互补),PFD=130(已知),2=180-130=50,1+2=40+50=90,即EPF=90;探究如图,过点P作PMAB,MPE=AEP=50,ABCD,PMCD,PFC=MPF=120,EPF=MPF-MPE=120-50=70;应用(1)如图所示,EG是PEA的平分线,FG是PFC的平分线,AEG=AEP=25,GFC=PFC=60,过点G作GMAB,MGE=AEG=25(两直线平行,内错角相等)ABCD(已知),GMCD(平行于同一条直线的两直线平行),GFC=MGF=60(两直线平行,内错角相等)G
27、=MGF-MGE=60-25=35故答案为:35(2)当点A在点B左侧时,如图,故点E作EFAB,则EFCD,ABE=BEF,CDE=DEF,平分平分,ABE=BEF=,CDE=DEF=,BED=BEF+DEF=;当点A在点B右侧时,如图,故点E作EFAB,则EFCD,DEF=CDE,ABG=BEF,平分平分,DEF=CDE=,ABG=BEF=,BED=DEF-BEF=;综上:BED的度数为或【点睛】本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质12(1)平行,理由见解析;(2)35或145,画图、过程见解析;(3)50或130或60或120
28、【分析】(1)过点C作CFAB,根据B=50,C=85,D=35,即可得C解析:(1)平行,理由见解析;(2)35或145,画图、过程见解析;(3)50或130或60或120【分析】(1)过点C作CFAB,根据B=50,C=85,D=35,即可得CFED,进而可以判断AB平行于ED;(2)根据题意作ABCD,即可B=C=35;(3)分别画图,根据平行线的性质计算出B的度数【详解】解:(1)AB平行于ED,理由如下:如图2,过点C作CFAB,BCF=B=50,BCD=85,FCD=85-50=35,D=35,FCD=D,CFED,CFAB,ABED;(2)如图,即为所求作的图形ABCD,ABC=
29、C=35,B的度数为:35;ABCD,ABC+C=180,B的度数为:145;B的度数为:35或145;(3)如图2,过点C作CFAB,ABDE,CFDE,FCD=D=35,BCD=85,BCF=85-35=50,B=BCF=50答:B的度数为50如图5,过C作CFAB,则ABCFCD,FCD=D=35,BCD=85,BCF=85-35=50,ABCF,B+BCF=180,B=130;如图6,C=85,D=35,CFD=180-85-35=60,ABDE,B=CFD=60,如图7,同理得:B=35+85=120,综上所述,B的度数为50或130或60或120【点睛】本题考查了平行线的判定与性质
30、,解决本题的关键是区分平行线的判定与性质,并熟练运用13(1)见解析;见解析(2)AFG+EDG=DGF;AFG-EDG=DGF【分析】(1)根据题意画出图形;依据DEAB,DFAC,可得EDF+AFD=180,解析:(1)见解析;见解析(2)AFG+EDG=DGF;AFG-EDG=DGF【分析】(1)根据题意画出图形;依据DEAB,DFAC,可得EDF+AFD=180,A+AFD=180,进而得出EDF=A;(2)过G作GHAB,依据平行线的性质,即可得到AFG+EDG=FGH+DGH=DGF;过G作GHAB,依据平行线的性质,即可得到AFG-EDG=FGH-DGH=DGF【详解】解:(1)
31、如图,DEAB,DFAC,EDF+AFD=180,A+AFD=180,EDF=A;(2)AFG+EDG=DGF如图2所示,过G作GHAB,ABDE,GHDE,AFG=FGH,EDG=DGH,AFG+EDG=FGH+DGH=DGF;AFG-EDG=DGF如图所示,过G作GHAB,ABDE,GHDE,AFG=FGH,EDG=DGH,AFG-EDG=FGH-DGH=DGF【点睛】本题考查了平行线的判定和性质:两直线平行,内错角相等正确的作出辅助线是解题的关键14(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(1)由平角的定义,结合已知条件可得:从而可得答案;当时,有两种情况,画出
32、符合题意的图形,利用平行线的性质与角的和解析:(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(1)由平角的定义,结合已知条件可得:从而可得答案;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时的旋转时间与相同;(2)分两种情况讨论:当在上方时,当在下方时,分别用含
33、的代数式表示,从而可得的值;分别用含的代数式表示,得到是一个含的代数式,从而可得答案【详解】解:(1)DPC180CPADPB,CPA60,DPB30,DPC180306090,故答案为90;如图11,当BDPC时,PCBD,DBP90,CPNDBP90,CPA60,APN30,转速为10/秒,旋转时间为3秒;如图12,当PCBD时,PBD90,CPBDBP90,CPA60,APM30,三角板PAC绕点P逆时针旋转的角度为180+30210,转速为10/秒,旋转时间为21秒,如图13,当PABD时,即点D与点C重合,此时ACPBPD30,则ACBP,PABD,DBPAPN90,三角板PAC绕点
34、P逆时针旋转的角度为90,转速为10/秒,旋转时间为9秒,如图14,当PABD时,DPBACP30,ACBP,PABD,DBPBPA90,三角板PAC绕点P逆时针旋转的角度为90+180270,转速为10/秒,旋转时间为27秒,如图15,当ACDP时,ACDP,CDPC30,APN18030306060,三角板PAC绕点P逆时针旋转的角度为60,转速为10/秒,旋转时间为6秒,如图16,当时, 三角板PAC绕点P逆时针旋转的角度为转速为10/秒,旋转时间为秒,如图17,当ACBD时,ACBD,DBPBAC90,点A在MN上,三角板PAC绕点P逆时针旋转的角度为180,转速为10/秒,旋转时间为
35、18秒,当时,如图1-3,1-4,旋转时间分别为:, 综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”;(2)如图,当在上方时,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM302t,APN3tCPD180DPMCPAAPN90t, BPN+CPD1802t+90t2703t,可以看出BPN+CPD随着时间在变化,不为定值,结论错误当在下方时,如图,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM APN3tCPD BPN+CPD1802t+90t2703t,可以看出BPN+CPD随着时间在变化,不为定值,结论错误综上:正确,错误【
36、点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键15(1)证明见解析;(2)F=55;(3)MQNACB;理由见解析【分析】(1)首先根据平行线的性质得出ACEA,ECDB,然后通过等量代换即可得出答案;(2)首先根据角解析:(1)证明见解析;(2)F=55;(3)MQNACB;理由见解析【分析】(1)首先根据平行线的性质得出ACEA,ECDB,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出FCDECD,HAFHAD,进而得出F(HAD+ECD),然后根据平行线的性质得出HAD+ECD的度数,进而可得出答案;(
37、3)根据平行线的性质及角平分线的定义得出, ,再通过等量代换即可得出MQNACB【详解】解:(1)CEAB,ACEA,ECDB,ACDACE+ECD,ACDA+B;(2)CF平分ECD,FA平分HAD,FCDECD,HAFHAD,FHAD+ECD(HAD+ECD),CHAB,ECDB,AHBC,B+HAB180,BAD70, F(B+HAD)55;(3)MQNACB,理由如下:平分, 平分, , MQNMQGNQG180QGRNQG180(AQG+QGD)180(180CQG+180QGC)(CQG+QGC)ACB【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定
38、义是解题的关键四、解答题16(1)120;(2)EPF =AEP+CFP或AEP=EPF+CFP,证明见详解【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由ABCD,FHP=60,可以推出解析:(1)120;(2)EPF =AEP+CFP或AEP=EPF+CFP,证明见详解【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由ABCD,FHP=60,可以推出=60,计算PFD即可;(2)根据点P是动点,分三种情况讨论:当点P在AB与CD之间时;当点P在AB上方时;当点P在CD下方时,分别求出AEP、EPF、CFP之间的关系即可【详解】(1)当点与点、在一直线上时,作图如下,ABCD,FHP=60,=FHP=60,EFD=180-GEP=180-60=120,PFD=120,故答案为:120;(2)满足关系式为EPF =AEP+CFP或AEP=EPF+CFP证明:根据点P是动点,分三种情况讨论:当点P在AB与CD之间时,过点P作PQAB,如下图,ABCD,PQABCD,AEP=EPQ,CFP=FPQ,EPF=EPQ+FPQ=AEP+CFP,即EPF =AEP+CFP;当点P在AB上方时,如下图所示,AEP=EPF+EQP,ABCD,CFP=EQP,AEP=EPF+CFP;当点P在CD下方时,ABCD,AE